LNG als Alternativkraftstoff für den Antrieb von Schiffen und schweren Nutzfahrzeugen – Aktualisierung auf Verkehrsprognose 2030

Studie im Rahmen des Auftrags

Wissenschaftliche Begleitung, Unterstützung und Beratung des BMVBS in den Bereichen Verkehr und Mobilität mit besonderem Fokus auf Kraftstoffe und Antriebstechnologien sowie Energie und Klima des Bundesministeriums für Verkehr und digitale Infrastruktur (BMVI)

Hauptauftragnehmer:
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Institut für Verkehrsforschung
Rutherfordstraße 2, 12489 Berlin
Tel.: 030 67055-221, Fax: -283

im Unterauftrag:
ifeu – Institut für Energie- und Umweltforschung Heidelberg GmbH
Wilckensstraße 3, 69120 Heidelberg
Tel.: 06221 4767-35

Ludwig-Bölkow-Systemtechnik GmbH (LBST)
Daimlerstraße 15, 85521 München/Ottobrunn
Tel.: 089 608110-33

Deutsches Biomasseforschungszentrum gGmbH (DBFZ)
Torgauer Straße 116, 04347 Leipzig
Tel.: 0341 2434-423

Autoren:
R. Wurster, W. Weindorf, W. Zittel, P. Schmidt (LBST),
C. Heidt, U. Lambrecht (IFEU), A. Lischke, Dr. S. Müller (DLR)

Inhaltsverzeichnis

Inhaltsverzeichnis ...2
Abbildungsverzeichnis ..4
Tabellenverzeichnis ..5
1 Zusammenfassung ..6
2 Hintergrund und Zielsetzung ...10
3 Treiber für den Einsatz von LNG in der Schifffahrt und in schweren Nutzfahrzeugen13
4 Analyse des aktuellen LNG-Marktes ..17
 4.1 Verfügbarkeit und Versorgungssicherheit ..17
 4.1.1 Fossile Quellen für LNG ...17
 4.1.2 Regenerativer Strom als Quelle für LNG ..19
 4.2 LNG-Markt ..21
 4.3 LNG-Lieferung ..23
 4.4 LNG-Anlandung ...25
 4.5 Geplante regulatorische und Infrastrukturinitiativen ..27
 4.5.1 EU-Infrastrukturrichtlinie (AFID, Entwurf) ...27
 4.5.2 LNG Blue Corridors Project ..29
5 Stand der Technik bei Antrieben und Infrastruktur ..30
 5.1 Technische Aspekte für den Einsatz von LNG in der Seeschifffahrt30
 5.2 Technische Aspekte für den Einsatz von LNG in der Binnenschifffahrt39
 5.3 Technische Aspekte für den Einsatz von LNG bei schweren Nutzfahrzeuge41
 5.4 Zusammenfassung zum Stand der Technik für den LNG-Einsatz ..43
6 Szenarien zur Entwicklung der Energienachfrage nach LNG ...45
 6.1 Energienachfrage der Seeschifffahrt im Nord- und Ostseeraum ...45
 6.2 Szenariendefinition für Binnenschiffe und schwere Nutzfahrzeuge ...48
 6.2.1 Einsatz von LNG in der Binnenschifffahrt ...49
 6.2.2 Einsatz von LNG bei schweren Nutzfahrzeugen ..54
 6.3 Energienachfrage des Binnenschiff- und Straßengüterverkehrs in Deutschland57
 6.4 Gegenüberstellung der Nachfrage zum Potenzial für EE-Methan ...59
7 Potenzielle Beiträge zu Emissionsreduktionen ..60
 7.1 Methodik und Basisdaten zu den Treibhausgasemissionen ...60
 7.1.1 Allgemeine Emissionsfaktoren ...60
 7.1.2 Bereitstellung von LNG (WTT) ..61
Abbildungsverzeichnis

Abbildung 1: Vergleich von H₂ und CH₄ als Power-to-Gas Kraftstoffoptionen .. 11
Abbildung 2: SOₓ-Emissionsgrenzen und Gültigkeitsjahre nach IMO MARPOL Annex VI 14
Abbildung 3: Die Hauptbunkerhäfen für Schiffe des maritimen Transports weltweit 14
Abbildung 4: Reserven- und Ressourcenangaben für konventionelle und unkonventionelle Gasquellen .. 19
Abbildung 5: LNG-Versorgungsketten für Deutschland ... 22
Abbildung 6: International Handelsströme für Erdgas via Rohrleitung und LNG-Schiffstransport ... 26
Abbildung 7: Deutsche Häfen im TEN-V Kernnetz .. 28
Abbildung 8: Angedachte Transportkorridore und Standorte von LNG-Tankstellen in Europa im Rahmen des „LNG Blue Corridors Project“ .. 29
Abbildung 9: Varianten zur Bunkерung von LNG bei Seeschiffen .. 33
Abbildung 10: Ausbauvorhaben für LNG-Terminals im Nord- und Ostseeraum 36
Abbildung 11: Erwartete Entwicklung der LNG-Nachfrage im Nord- und Ostseeraum bis 2030 47
Abbildung 12: Aufteilung der Transportleistung in Neubauten und ältere Schiffe im Jahr 2030 53
Abbildung 13: Transportleistung auf Binnenschiffen in den Szenarien mit LNG und Diesel 54
Abbildung 14: LNG Nachfrage für die Binnenschifffahrt in den Szenarien .. 57
Abbildung 15: LNG Nachfrage für den Straßenverkehr in zwei Szenarien 58
Abbildung 16: LNG Nachfrage in 2030 nach Szenario und Sektoren in Deutschland 59
Abbildung 17: Pfade bzw. Routen für die Bereitstellung von LNG von der Quelle bis zum Tank („Well-to-Tank“) ... 62
Abbildung 18: Energieaufwendungen für ausgewählte CNG und LNG Bereitstellungspfade (einschließlich der im Kraftstoff enthaltenen Energie) .. 64
Abbildung 19: Treibhausgasemissionen für die LNG-Bereitstellung (einschließlich im Kraftstoff enthaltenen Kohlenstoffs) .. 65
Abbildung 20: Spezifische THG-Emissionen bei Seeschiffen 2013 .. 69
Abbildung 21: Spezifische THG-Emissionen bei Binnenschiffen 2013 .. 70
Abbildung 22: Spezifische THG-Emissionen bei Binnenschiffen (WTP) 2030 70
Abbildung 23: Potenzielle THG-Reduktion durch LNG in der Binnenschifffahrt in Abhängigkeit des Anteils erneuerbaren Methans .. 71
Abbildung 24: Spezifische THG-Emissionen bei schweren Nutzfahrzeugen (N3) 2013 72
Abbildung 25: Spezifische THG-Emissionen bei schweren Nutzfahrzeugen (N3) 2030 73
Abbildung 26: Potenzielle THG-Reduktion durch LNG im Straßenverkehr in Abhängigkeit des Anteils erneuerbaren Methan .. 74
Abbildung 27: Vergleich spezifischer Schadstoffemissionen von LNG gegenüber Diesel bei Binnenschiffen .. 77
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 1:</td>
<td>Technische Potenziale erneuerbaren Stroms in Deutschland (ohne Biomasse)</td>
<td>20</td>
</tr>
<tr>
<td>Tabelle 2:</td>
<td>Wirkungsgrade und Kraftstoffpotenziale für die Bereitstellung von LNG aus erneuerbarem Strom</td>
<td>21</td>
</tr>
<tr>
<td>Tabelle 3:</td>
<td>Produktion, Verbrauch und Importabhängigkeit bei Erdgas</td>
<td>22</td>
</tr>
<tr>
<td>Tabelle 4:</td>
<td>Zusätzliche LNG Verflüssigungskapazitäten 2011 bis 2016</td>
<td>24</td>
</tr>
<tr>
<td>Tabelle 5:</td>
<td>Motorenkonzepte für den LNG-Einsatz in Seeschiffen</td>
<td>31</td>
</tr>
<tr>
<td>Tabelle 6:</td>
<td>Vor- und Nachteile der LNG-Bunkermöglichkeiten nach Abbildung 9</td>
<td>34</td>
</tr>
<tr>
<td>Tabelle 7:</td>
<td>Kraftstoffverbrauch (Schweröl) in Tonnen pro Jahr nach Schiffstyp und Fahrgewitter in 2007</td>
<td>47</td>
</tr>
<tr>
<td>Tabelle 8:</td>
<td>Zukünftige Kraftstoffverbrauchsreduktion in der Binnenschifffahrt</td>
<td>51</td>
</tr>
<tr>
<td>Tabelle 9:</td>
<td>Daten und Annahmen zur Entwicklung der Schiffsgröße in der Binnenschifffahrt</td>
<td>52</td>
</tr>
<tr>
<td>Tabelle 10:</td>
<td>Aufteilung der Transportleistung nach Schiffsarten (≥2.500 t) in 2010</td>
<td>53</td>
</tr>
<tr>
<td>Tabelle 13:</td>
<td>Verbrauchsreduktionspotenziale für die Fahrzeugklasse N3 (Diesel und LNG)</td>
<td>56</td>
</tr>
<tr>
<td>Tabelle 14:</td>
<td>Szenario zur Nutzung von Beimischungsanteilen für Diesel und LNG im Jahr 2030</td>
<td>57</td>
</tr>
<tr>
<td>Tabelle 15:</td>
<td>Energie und Stoffströme bei der Produktion von Methan aus H₂ und CO₂</td>
<td>64</td>
</tr>
<tr>
<td>Tabelle 16:</td>
<td>Emissionsfaktoren für Treibhausgase bei Binnenschiffsantrieben (TTP)</td>
<td>67</td>
</tr>
<tr>
<td>Tabelle 17:</td>
<td>Emissionsfaktoren für Treibhausgase bei schweren Nutzfahrzeugen (TTW)</td>
<td>68</td>
</tr>
<tr>
<td>Tabelle 18:</td>
<td>Schadstoffemissionen TTP von neuen Binnenschiffsantrieben in 2010</td>
<td>76</td>
</tr>
<tr>
<td>Tabelle 19:</td>
<td>Einheiten für Erdgas bzw. Methan</td>
<td>96</td>
</tr>
<tr>
<td>Tabelle 20:</td>
<td>Unterer Heizwert von Kraftstoffen</td>
<td>96</td>
</tr>
</tbody>
</table>
1 Zusammenfassung

Hintergrund

Der Verkehrssektor ist europa- und weltweit charakterisiert durch einen deutlich steigenden Energieverbrauch. Als solcher ist er nicht nur von den limitierten fossilen Ressourcen (z. B. Mineralöl) abhängig, sondern gilt zudem als ein Mitverursacher des anthropogenen Treibhauseffekts. Global trägt der Verkehr mit etwa 22% zu den Treibhausgasemissionen (THG) bei. In Deutschland beträgt der Beitrag des Straßenverkehrs zu den Treibhausgasemissionen zwischen 17% und 20%.

Für die erfolgreiche Einführung erneuerbarer Energien sowie die Verminderung von Treibhausgasemissionen im Bereich Schifffahrt und Straßenverkehr müssen besondere Herausforderungen hinsichtlich der Antriebstechnologie, der Infrastruktur sowie der Primärenergiediversifikation gelöst werden. Liquefied Natural Gas (LNG) ist eine Alternative, die parallel zu fossilen Kraftstoffen aus Rohöl (z. B. Diesel) insbesondere für Verkehrsmittel als geeignet erscheint, die eine hohe Reichweite benötigen oder die hohe Leistungsbedarfe haben.

Wesentliche Treiber

Wesentliche Treiber für die Einführung von LNG im Verkehrsbereich sind eine größere Reichweite gegenüber CNG sowie die deutliche Reduktion lokaler Emissionen bzw. einfachere Abgasnachbehandlungsmöglichkeiten. Gegebenenfalls sind auch geringere Kraftstoffkosten und verminderte Treibhausgasemissionen erreichbar.

Die vorhandene LNG-Infrastruktur bei einem Verkehrsträger kann als Treiber für eine bevorzugte Nutzung von LNG in anderen Verkehrsträgern wirken.

Verschärfte Emissionsgrenzwerte (SO₂, NOₓ, Partikel und Schwermetalle) erfordern in der Seeschifffahrt einen Wechsel von Schweröl zu Marinedieselöl (vergleichbar mit Dieselkraftstoff) bzw. LNG. In der Binnenschifffahrt sind im Rahmen verschärfter Emissionsstandards zu erwartende Senkung der Schadstoffemissionen (NOₓ, PM), Sektor spezifische THG-Emissionsreduktionsziele sowie geringere Kraftstoffkosten wesentliche Treiber.

Auf der Basis von erneuerbarem Methan kann LNG auch zum EU-Ziel von 10% erneuerbare Energien im Verkehr bis 2020 beitragen.

Verfügbarkeit von LNG

Kernbotschaften zu den Perspektiven von LNG

Die Perspektiven für LNG als Alternativkraftstoff in der Schifffahrt und im Straßengüterverkehr wurden anhand von Analysen des LNG-Markts, der Technik für Antriebe und Infrastruktur, sowie den potenziellen Emissionsreduktionen untersucht. Es ergeben sich folgende Kernbotschaften:

- **Anwendungsübergreifend**
 - LNG-Einführung sollte gründlich vorbereitet und alle relevanten technischen und wirtschaftlichen Risiken müssen identifiziert und bewertet werden.
 - Erhöhte Energieversorgungssicherheit mit LNG durch Kraftstoffdiversifizierung
 - Eignung für den Ferngüterverkehr als Alternative zum Diesel
 - Eingeschränkte Verminderung der THG-Emissionen durch fossiles LNG mit heutiger Technik, relevante THG-Minderungen sind nur durch EE-Methan erreichbar
 - Derzeit noch wenige Schiffe und Fahrzeuge im Einsatz, die LNG als Kraftstoff nutzen
 - LNG-Infrastruktur muss von Grund auf neu geschaffen werden
 - LNG-Anbieter werden zusätzliche Infrastruktur erst dann aufbauen, wenn es eine robuste Perspektive für eine steigende LNG-Nachfrage gibt.
 - Nationale Regeln können den Infrastrukturaufbau verzögern bzw. ungleichmäßig vorankommen lassen.
 - Lokale Verflüssigung von Erdgas bzw. Methan ist perspektivisch sehr relevant, vor allem zur Integration von (fluktuierenden) erneuerbaren Energien.
 - Mit zukünftig erwarteten erneuerbaren Strompotenzialen relevante Substitution von LNG durch EE-Methan denkbar, die jedoch in Konkurrenz mit weiteren Verbrauchern (sonstiger Verkehr, Wasserstoff/Brennstoffzellenfahrzeuge, stationärer Sektor) steht.

Seeschifffahrt
- Internationale Seeschifffahrt in 2030 potenziell der größte LNG-Verbraucher im Verkehr
- Technik für den Einsatz von LNG am Markt verfügbar
- Kraftstoffkosten geringer als bei Mitteldestillaten wie Marinedieselöl, aber teurer als bei Schweröl
- Einhaltung bzw. Unterschreitung zukünftig geplanter Grenzwerte für NOx und Schwefelgehalt mit LNG möglich, darüber hinaus auch drastische Reduktion der Partikelemissionen.

Binnenschifffahrt
- Technik für den Einsatz von LNG am Markt verfügbar
- Einsatz besonders in neuen bzw. größeren Schiffen realisierbar und kosteneffizient
- Hohe Abdeckung bereits durch Infrastrukturausbau entlang von Hauptwasserstraßen, z.B. Rhein, möglich
- THG-Vorteil vor allem bei erneuerbarem LNG → damit insgesamt für die Binnenschifffahrt THG-Minderung von bis zu 37% zwischen 1990 bis 2030 möglich (EU-Vorschlag für Verkehr: 20%)
- Deutliche Reduktion der Schadstoffemissionen mit LNG gegenüber Diesel möglich (ca. -80% PM/NOx) → Dieselschiffe könnten durch strengere Emissionsgrenzwerte (wie heute für z.B. Lkw gültig) zukünftig jedoch „gleichziehen“

Schwere Nutzfahrzeuge
- Reduzierung bzw. langfristige Kalkulierbarkeit der Kraftstoffkosten
- LNG größere Reichweite als CNG (nicht immer notwendig)
- Erfordert eine eigene Infrastruktur nur für schwere Nutzfahrzeuge
- Potenzial zur Senkung der absoluten THG-Emissionen gering und nur mit EE-Methan möglich
- Ausbau zuerst entlang der Hauptkorridore mit evtl. Synergien mit der Binnenschifffahrt
Handlungsempfehlungen

Ergebnis der Studie ist, dass LNG aus heutiger Sicht gute Perspektiven für den Einsatz als Alternativkraftstoff im Schiffsverkehr und in begrenztem Maße bei schweren Nutzfahrzeugen bietet. Hierbei ist insbesondere die notwendige Einbindung erneuerbarer Energien in diese Verkehrsträger hervorzuheben. Um die Grundlagen für die Einführung von LNG zu schaffen, werden folgende Handlungsempfehlungen vorgeschlagen:

- **Infrastruktur**
 - Berücksichtigung dezentraler Verflüssigung in Infrastrukturplanungen
 - Planung des LNG-Tankstellennetzes entlang stark befahrener Korridore und in Abstimmung mit der Binnenschifffahrt entlang stark befahrener Wasserstraßen (Nutzung von Synergien)
 - Schaffung erforderlicher genehmigungsrechtlicher Grundlagen (z.B. Schiffe und Bunkerstellen)
 - Errichtung von LNG-Tankstellen zunächst für Pilotprojekte (Flotten und Pendelverkehre)
 - Kooperation zwecks Anschlussfähigkeit (Europa und international)

- **Schiffe**
 - Unterstützung von Akteuren bei Pilotanwendungen, z.B. in Genehmigungsfragen
 - Förderung emissionsarmer Schiffe und damit auch von LNG, z.B. in Häfen
 - Kriterien zur Finanzierungswürdigkeit definieren, dies insbesondere auf Basis der aktuellen und absehbaren Marktentwicklung in den verschiedenen Frachtsegmenten, z.B. Frachtart, Schiffsgröße.
 - Weitere Forschungsprojekte und Demonstrationsprojekte sind notwendig, um LNG als relevanten Kraftstoff in der Seeschifffahrt zu etablieren.
 - Einrichtung eines Entwicklungsplanes für „LNG als Alternativkraftstoff in der See- und Binnenschifffahrt“

- **Schwere Nutzfahrzeuge**
 - Akzeptanz bei den Nutzern muss noch untersucht werden hinsichtlich
 - Dual-Fuel in Dieselmotoren als auch reinem Methan
 - LNG bzw. CNG als Kraftstoff je nach Anwendung
 - Bei erfolgreicher Implementierung eines Entwicklungsplanes in der See- und Binnenschifffahrt sollten die Erfahrungen für den Nutzfahrzeugsektor genutzt und ein eigener Entwicklungsplan für LNG in schweren Nutzfahrzeugen erwogen werden, der die Errichtung der Tankstelleninfrastruktur vorbereitet, der Genehmigungsverfahren beschreibt und notwendige Rahmenbedingungen prüft.
2 Hintergrund und Zielsetzung

Global wächst neben dem Flugverkehr der maritime Schiffsverkehr, der allein etwa 90% des Welthandels transportiert. Flugverkehr und maritimer Schiffsverkehr tragen etwa 2% zu den globalen CO₂-Emissionen bei. In Deutschland und Europa wächst der Kraftstoffverbrauch insbesondere mit dem zunehmenden Lkw-Verkehr. Dies führt zu steigenden Schadstoff- und CO₂-Emissionen. Der Güterverkehr, der durch die Seeschifffahrt, die Binnenschifffahrt und durch schwere Nutzfahrzeuge abgewickelt wird, hängt zu weit über 90% vom Erdöl ab. Um einerseits diese hohe Abhängigkeit und andererseits die Schadstoff- und Klimagasmmissionen zu reduzieren, werden Optionen benötigt, fossiles
oder regenerativ erzeugtes Erdgas in den Transportsektor zu integrieren. Weitere Daten und Analysen finden sich in der MKS-Studie „Erneuerbare Energien im Verkehr“.

In der vorliegenden Studie wird die Möglichkeiten untersucht, die LNG (Flüssigerdgas) bietet, den Energiebedarf der Seeschifffahrt, der Binnenschifffahrt und von schweren Nutzfahrzeugen zu decken und dabei Schadstoff- und Klimagasemissionen einzusparen.

In der Nord- und Ostsee sollen ab 2015 die Schwefelemissionen so stark reduziert werden, dass Ozeanschiffe nicht mehr mit Schweröl ohne aufwendige Nachreinigung betrieben werden können. Diese Regelung soll spätestens ab 2025 auf die Weltmeere ausgedehnt werden [LR 2012]. In der Binnenschifffahrt muss bereits seit 2011 wie bei schweren Nutzfahrzeugen mit schwefelarmem Dieselkraftstoff gefahren werden. So wie die Europäische Union bereits die CO₂-Emissionen für Pkws und für Lieferfahrzeuge in den nächsten Jahren weiter limitieren wird, ist zu erwarten, dass dies künftig auch auf schwere Nutzfahrzeuge ausgedehnt werden wird. Wesentlich gesteigerte Kraftstoffnutzungsgrade bzw. wenn diese nicht erzielt werden können, ein zunehmender Anteil an CO₂-freien Kraftstoffen, also vornehmlich aus erneuerbaren Quellen, werden dann im Vordergrund stehen müssen.

Abbildung 1: Vergleich von H₂ und CH₄ als Power-to-Gas Kraftstoffoptionen

Quelle: [Stolten 2012]
Erdgas als alternativer fossiler Kraftstoff wird heute bereits in Form von Druckerdgas (CNG) in PKW und Stadtbussen eingesetzt, in einigen Ländern wie Argentinien, Brasilien, China, Indien, Iran, Italien und Pakistan mit einem nennenswerten Fahrzeugeanteil und Fahrzeugpopulationen von jeweils über 1,5 Millionen Einheiten. Die Verwendung von verflüssigtem, tiefkalten Erdgas (LNG) wurde bisher nur dort diskutiert, wo es (a) über entsprechende Infrastruktur verfügbar war und (b) auf Grund seiner höheren Energiedichte auch in solchen Fahrzeugklassen sinnvoll einsetzbar ist, in denen andere alternative Kraftstoffe wie CNG oder alternative Antriebe wie die Elektromobilität die heute vom Nutzer erwarteten Einsatzanforderungen nicht ausreichend erfüllen. Dies trifft insbesondere auf die See- und Binnenschifffahrt bzw. schwere Nutzfahrzeuge im Straßengüterverkehr zu. China führt bei Erdgasbetankungsanlagen weltweit mit 3.350 CNG-, 400 LCNG- und 1.330 LNG-Stationen [NGVAeurope 2013]. Erste Einsätze von LNG in Schiffen oder Nutzfahrzeugen gehen auf Demonstrationsaktivitäten bereits Ende der 90er Jahre zurück.

Bisher spielt LNG weder in der Schifffahrt noch bei schweren Lkw in Deutschland eine nennenswerte Rolle. Die aktuelle europäische als auch die internationalen Diskussionen zeigen, dass eine intensive Beschäftigung mit dem Einsatz dieses Energieträgers auch in Deutschland notwendig ist.

3 Treiber für den Einsatz von LNG in der Schifffahrt und in schweren Nutzfahrzeugen

In diesem Kapitel werden die vorteilhaften Charakteristika von Erdgas und LNG beschrieben und die möglichen Umweltvorteile herausgestellt. Außerdem werden die Chancen aufgezeigt, die LNG insbesondere für die (See-)Schifffahrt bieten kann. Es enthält zudem eine Übersicht über Treiber zum Einsatz von LNG in See- und Binnenschiffen sowie in schweren Nutzfahrzeugen.

Der Einsatz von LNG als Kraftstoff für Schiffe und schwere Nutzfahrzeuge bietet im Vergleich zu existierenden Alternativen wie z.B. 20 MPa Druckerdgas (CNG) oder Methanol eine teilweise deutlich höhere volumetrische Energiedichte (etwa Faktor 2 zu CNG und etwa Faktor 1,3 zu Methanol). Hingegen wird bei LNG die Energiedichte von Diesel nicht erreicht (etwa Faktor 0,58). Die Reichweiten- einbußen im Vergleich zu Diesel erscheinen bei vergleichbarem Speichervolumen jedoch akzeptabel. Bei schweren Nutzfahrzeugen wird aktuell je nach Tankvolumen von 600-1.000 km Reichweite ausgegangen [LO 2013]. Einige Transportrelationen wie z.B. Containertransporte, die in Deutschland oft mehrmals umgeschlagen werden, können auch mit deutlich kleineren Reichweitenanforderungen von unter 300 km auskommen [MAN 2014].

Aufgrund des niedrigeren Kohlenstoffanteils pro Energiegehalt entstehen auch bei der Verbrennung von LNG potenziell geringere CO₂-Emissionen als bei Diesel. Zu beachten ist aber der Methanschlupf, der je nach Motorenkonzept die im Vergleich zu Diesel niedrigeren CO₂-Emissionen teilweise bis vollständig kompensiert (1 g Methan hat die gleiche Treibhausgaswirkung wie 25 g Kohlendioxid). Eine besonders effiziente LNG-Nutzung ermöglichen dabei Dual-Fuel-Antriebe mit kombinierter Hochdruckdirekteinblasung von Methan und Diesel mittels Dieselsitzflamme, wodurch gegenüber Diesel etwa 20% geringere CO₂-Emissionen erwartet werden [Westport 2003]. Im Vergleich zu Diesel ist Erdgas in der Verbrennung auch intrinsisch sauberer was die Schadstoffemissionen (insbesondere NOₓ und Partikel) anbelangt, weiterhin entstehen durch den geringen Schwefelgehalt kaum Schwefeloxidemissionen. Strengere Grenzwerte für Schadstoffemissionen können daher den Einsatz von LNG treiben.

Dies wird insbesondere für die Seeschifffahrt diskutiert, in welcher aktuell eine deutliche Verschärfung der Umweltstandards geplant ist (siehe Abbildung 2). Dies betrifft insbesondere:
• Reduktion des Schwefelgehalts von Schiffsbrandstoffen – in den Emission Control Areas sind ab 1.01.2015 nur noch 0,1% SO₂ zulässig (heute noch 1%) [ECG 2011] und nach MARPOL Annex VI gelten ab 2020, spätestens 2025, global 0,5% SO₂ als Grenzwert

• Reduktion der Emission von SO₂, NOx, Partikeln und Schwermetallen

• Schwefelarme Mitteldestillate statt Schweröl für den Betrieb von Schiffen

Abbildung 2: SO₂-Emissionsgrenzen und Gültigkeitsjahre nach IMO MARPOL Annex VI
Quelle: [LR 2012]

Eine Übersicht über die wichtigsten Bunkerhäfen für die Seeschifffahrt gibt Abbildung 3. Insbesondere in Europa und Nordamerika gehört bereits die Mehrheit der Häfen zu den ECA-Gebieten.

Abbildung 3: Die Hauptbunkerhäfen für Schiffe des maritimen Transports weltweit
Quelle: [LR 2012]

Bezogen auf die einzelnen Akteure bei den Transportdienstleistern werden aus heutiger Sicht eine Reihe von Faktoren gesehen, die als Treiber für eine Nutzung von LNG eingestuft werden. Diese werden im Folgenden für die Verkehrsträger See- und Binnenschifffahrt und schwere Nutzfahrzeuge aufgeführt.
Treiber in der Seeschifffahrt:

- Die Umrüstung auf LNG bedeutet derzeit einen Kostenmehraufwand für die Reeder, welcher ohne die absehbare Verschärfung der Emissionsgrenzwerte aus aktueller Perspektive nicht betrieben werden würde. Damit sind die Richtlinien und deren Umsetzung sowie die Kontrolle ein wesentlicher Treiber für die Nutzung von LNG.

Treiber in der Binnenschifffahrt:

- Geringere Kraftstoffpreise von LNG gegenüber Dieselkraftstoff (laut [Panteia 2013] um ca. 20%)

- Geringere Schadstoffemissionen gegenüber Diesel, da Abgasnachbehandlungstechniken wie Partikelfilter oder SCR-Systeme derzeit kaum in Binnenschiffsmotoren eingesetzt werden.

- Geringere Lärmemissionen (bis zu 3 db) bei reinen Erdgasmotoren, von denen insbesondere bevölkerte Wasserstraßen- oder Hafengebiete profitieren könnten.

- Erschließung zusätzlicher Potenziale für den Einsatz von erneueraren Energien (Biomethan oder Methan aus erneuerbarem Strom) in der Binnenschifffahrt und damit auch zur Senkung der Treibhausgasemissionen.

- Ladungs-Umschlagterminals in Binnenhäfen können sowohl die LNG-Betankung von Schiffen als auch von Lkw anbieten (LNG kann auf dem Fluss angeliefert und ggf. auch weiter über die Straße verteilt werden), bzw. könnte auch lokal aus leitungsgebundenem Erdgas verflüssigt werden.

Treiber bei schweren Nutzfahrzeugen:

- In erster Linie wird in LNG aktuell ein preisgünstiger bzw. in den kommenden Jahren preisstabiler Alternativkraftstoff gesehen, der gegenüber konventionellem Diesel bei entsprechen- der Laufleistung der Fahrzeuge wirtschaftliche Vorteile verspricht.

- Kostensteigerungen beim Diesel können besser aufgefangen werden, wenn ein Teil der Lkw- Fahrzeugflotte ganz oder im Mix mit LNG gefahren werden kann.
Für einzelne Akteure sind die geringeren CO₂ Emissionen gegenüber dem Dieselkraftstoff bereits heute ein wichtiges Argument für die Nutzung von LNG. Sollte die Europäische Kommission analog zum Pkw und zum leichten Nutzfahrzeug ebenfalls CO₂ Grenzwerte für schwere Nutzfahrzeuge vorgeben, besitzt der Kraftstoff LNG aufgrund des geringeren Kohlestanteils einen Zusatzvorteil gegenüber Diesel. Dieser könnte sich dann unter anderem in günstigeren Preisen für neue schwere Nutzfahrzeuge mit LNG widerspiegeln.

Gegenüber CNG besitzt LNG den Vorteil, dass aufgrund des geringeren Volumens eine höhere Reichweite möglich ist und deshalb weniger häufig getankt werden muss.

4 Analyse des aktuellen LNG-Marktes

Im Folgenden wird der aktuelle LNG-Markt mit relevanten Quelle-Nutzungsrelationen, derzeitigen Aktivitäten und deren potenzielle Entwicklung bzw. Marktvolumina und Akteuren beschrieben.

4.1 Verfügbarkeit und Versorgungssicherheit

4.1.1 Fossile Quellen für LNG

Mehr als die Hälfte der Erdgasreserven ist in den drei Ländern Russland, Iran und Katar konzentriert. 70% der Reserven in Iran und Katar beziehen sich auf ein gemeinsames Vorkommen, dessen Größe anhand von wenigen Bohrungen vor mehreren Jahrzehnten geschätzt wurde. Die USA besitzen etwa 4,3% der weltweiten Erdgasreserven, die Hälfte davon in Form von Kohleflözgas (Coal Bed Methane) und Schiefergas (Shale Gas) – entleeren diese als weltgrößtes Gasförderland jedoch überproportional schnell.

Auch die Abschätzungen für Deutschland, die mit 1300 Mrd. m³ zehnmal so groß wie die Gasreserven angegeben werden, sind wenig belastbar. Selbst die jährlich schrumpfenden gesicherten Reserven Deutschlands von 123 Mrd. m³ sind zu gering, um den jährlichen Rückgang der Gasförderung – seit 2000 um 50% – auf unter 12 Mrd. m³ (2013) zu verhindern. Ein Einfluss der potenziellen deutschen Schiefergasförderung auf den Importpreis ist bei einem Verbrauch von ca. 100 Mrd. m³/Jahr und unter günstigen Bedingungen einem Schiefergasbeitrag von wenigen, vermutlich aber unter 1 Mrd. m³ nicht zu erwarten.

Die großen Schiefergasressourcen in China (25 Mrd. m³), Argentinien (22 Billionen m³) oder Algerien (20 Billionen m³) müssen vor der Tatsache, dass insbesondere in diesen Regionen ein permanenter Wassermangel herrscht (z.B. das große argentinische Vorkommen liegt in der Formation „vaca muerta“ (sic!) mit ca. 230 mm Jahresniederschlagsmenge) und/oder kaum Gasinfrastruktur vorhanden ist, um die jeweils geringen Fördermengen zu potenziellen Verbrauchern zu bringen, kritisch bewertet werden.

In Deutschland herrscht ein faktisches Moratorium für alle Kohlenwasserstoffbohrungen, die durch Stimulation („Fracking“) den Untergrund aufbrechen, um die Förderrate zu erhöhen, das auf den Druck sich seit 2010 schnell formierender Bürgerinitiativen und in Einigung zwischen beteiligter Industrie und Politik vereinbart wurde. Einige Studien wurden durchgeführt, die auf die mit der Fördermethode verbundenen Risiken hinweisen. Angesichts mangelnder Potenziale zur Erschließung neuer konventioneller Erdgasfelder in Deutschland ist damit zu rechnen, dass dieses Moratorium erneut auf den Prüfstand gestellt wird.
Die langfristige Entwicklung eines europäischen bzw. globalen LNG-Marktes hängt von vielen Faktoren ab. Einer der entscheidenden Faktoren ist die Frage, wie viele der identifizierten Erdgas-Ressourcen (siehe Abbildung 4) sich tatsächlich in gesicherte produzierbare Erdgas-Reserven transferieren lassen.

4.1.2 Regenerativer Strom als Quelle für LNG

Die technisch nachhaltig erschließbaren Potenziale\(^\text{1}\) zur Nutzung erneuerbarer Energien in Deutschland sind erst zu einem geringen Teil erschlossen. Außer bei der Stromerzeugung aus Wasserkraft – hier wird ein Großteil des vorhandenen Potenzials bereits genutzt – weisen die anderen untersuchten

Technologien hohe, noch nicht genutzte Potenziale zur Stromerzeugung auf, insbesondere Windkraft und Photovoltaik (vgl. Tabelle 1). Eine detaillierte Beschreibung zu den technischen Potenzialen erneuerbarer Energien findet sich in der MKS-Studie „Erneuerbare Energien im Verkehr“.

Tabelle 1: Technische Potenziale erneuerbaren Stroms in Deutschland (ohne Biomasse)

<table>
<thead>
<tr>
<th>Technologie</th>
<th>Langfristiges technisch-nachhaltiges Potenzial</th>
<th>Bereits genutztes Potenzial 2012 [AGEB 2013]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Literaturauswertung Annahmen für diese Studie</td>
<td>Untere Grenze Obere Grenze</td>
</tr>
<tr>
<td>Wasserkraft</td>
<td>25 TWh/a</td>
<td>42 TWh/a</td>
</tr>
<tr>
<td>Wind Onshore</td>
<td>195 TWh/a</td>
<td>2.897 TWh/a</td>
</tr>
<tr>
<td>Wind Offshore</td>
<td>64 TWh/a</td>
<td>280 TWh/a</td>
</tr>
<tr>
<td>Photovoltaik</td>
<td>163 TWh/a</td>
<td>405 TWh/a</td>
</tr>
<tr>
<td>Geothermie</td>
<td>15 TWh/a</td>
<td>300 TWh/a</td>
</tr>
<tr>
<td>Gesamt</td>
<td>462 TWh/a</td>
<td>3.939 TWh/a</td>
</tr>
</tbody>
</table>

Das Stromerzeugungspotenzial durch Geothermie wird in Höhe von 15 TWh/a angenommen, hierbei wird die Nutzung von „Fracking-Technologien“ ausgeschlossen, wie sie z.B. im Rahmen des „Hot Dry Rock“-Verfahrens zur geothermischen Stromerzeugung eingesetzt werden.

Tabelle 2: Wirkungsgrade und Kraftstoffpotenziale für die Bereitstellung von LNG aus erneuerbarem Strom

<table>
<thead>
<tr>
<th></th>
<th>CO₂ aus Luft</th>
<th>CO₂ aus Abgas, z.B. Holzheiz(kraft)werke</th>
<th>CO₂ aus Biogasaufbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirkungsgrad</td>
<td>41%</td>
<td>50%</td>
<td>51%</td>
</tr>
<tr>
<td>CO₂-Verfügbarkeit</td>
<td>Keine Limitierung</td>
<td>7.700 Mio. Nm³/a ³)</td>
<td>330 Mio. Nm³/a ¹)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>625 Mio. Nm³/a ²)</td>
</tr>
<tr>
<td>LNG-Kraftstoffpotenzial</td>
<td>191 TWh/a</td>
<td>77 TWh/a</td>
<td>3,3 TWh/a ¹)</td>
</tr>
<tr>
<td></td>
<td>(686 PJ)</td>
<td></td>
<td>6,2 TWh/a ²)</td>
</tr>
</tbody>
</table>

1) Bestand an Biogasanlagen, die 2012 Methan in das Erdgasnetz einspeisen nach [DBFZ et al 2013]
2) Bestand Biogasanlagen > 1 MWel nach [DBFZ et al 2013]
3) Holzheizkraftwerke > 1 MWel nach [DBFZ et al 2013]

Werden nur die mit niedrigem Energieaufwand zugänglichen CO₂-Quellen berücksichtigt (d.h. CO₂ aus dem Abgas von Holzheiz(kraft)werken sowie CO₂ aus der Biogasaufbereitung), würden die für Kraftstoffe verfügbaren technisch-nachhaltigen Strompotenziale in Deutschland für etwa 86 TWh LNG ausreichen. Dies entspricht energetisch ca. 14% des heutigen Kraftstoffverbrauchs in Deutschland.

4.2 LNG-Markt

Eine LNG-Versorgung Deutschlands kann prinzipiell über maritim angeliefertes LNG (angenommen Lieferquelle Katar) und dessen Weiterverteilung und Nutzung, sowie lokal aus Erdgas verflüssigtes LNG und dessen Weiterverteilung und Nutzung erfolgen (siehe Abbildung 5). Die lokale Verflüssigung hat in Deutschland derzeit noch kaum Relevanz, könnte zukünftig aber insbesondere beim Aufbau einer LNG-Infrastruktur und für die Nutzung von synthetischem Methan (EE-Methan) genutzt werden.
Abbildung 5: LNG-Versorgungsketten für Deutschland

Im Jahr 2012 gingen etwa 37% aller LNG-Exporte nach Japan, etwa 16% nach Südkorea, 5% nach Taiwan, 6% nach Indien und etwa 6% nach China, so dass in Summe etwa 69% des LNG in diese fünf Länder geliefert wurde. Fast 19% des LNG wurde in die EU exportiert und weniger als 2% in die USA. Etwa 40% des LNG stammt aus dem Mittleren Osten (Oman, Katar, Vereinigte Arabische Emirate, Jemen), während Russland sein Erdgas vorwiegend über Pipelines exportiert [GIIGNL 2013].

| Tabelle 3: Produktion, Verbrauch und Importabhängigkeit bei Erdgas |
|-----------------|------------------------------|-----------------|-----------------|-----------------|
| Region | Produktion | Verbrauch | Import- |
| | Mrd. ft³/d | Mrd. m³/a | abhängigkeit |
| EU | 6.308 | 179 | 16.921 | 479 | 63% |
| USA | 24.063 | 681 | 25.502 | 722 | 6% |
| Brasilien | 601 | 17 | 1.031 | 29 | 42% |
| Indien | 1.426 | 40 | 2.076 | 59 | 31% |
| China | 3.828 | 108 | 5.152 | 146 | 26% |
Demonstrationsversuche mit LNG-Flotten von schweren Nutzfahrzeugen in Europa

- 30 LNG Sattelzüge von Simon Loos in den Niederlanden seit 2012
- 10 LNG Sattelzüge von Logistiker Gebr. Huybregts in den Niederlanden (betrieben mit verflüssigtem Biomethan)
- 15 LNG Sattelzüge von Vos Logistics in den Niederlanden seit 2012
- 14 LNG LKWs von Coca Cola im Vereinigten Königreich seit 2012
- LNG Sattelzüge von Logistiker Hellmann in Osnabrück gehen noch in 2013 in Betrieb [Eurotrans 2013]
- 2 LNG Zugmaschinen (Scania/Otto EURO VI und Volvo/Dual-Fuel EURO V) von Transportes Monfort in Castellón seit 2013
- Zahlreiche Verkäufe von Volvo/Dual-Fuel EURO V in 2013 in den UK:
 - 35 LNG Verteil-Lkw bei Tesco [Gas-rec 2013a]
 - 50 LNG Zugmaschinen bei ASDA Logistics [Volvo 2013a]
 - 101 LNG Zugmaschinen bei DHL, 51 weitere bestellt [Transport Engineer 2013a]
 - 20 LNG Zugmaschinen bei Eddie Stobart Logistics [Transport Engineer 2013b]

Bei Rohöl besteht eine hohe Importabhängigkeit. 2012 importierte die EU etwa 85% ihres Verbrauchs. Mit Einbeziehung von Norwegen waren es etwa 70%. Zu beachten ist dabei, dass die Erdölförderung in Großbritannien und Norwegen seit einigen Jahren zurückgeht, was bei Annahme eines gleichbleibenden Verbrauchs zu einer Erhöhung der Importabhängigkeit der EU auch unter Einbeziehung von Norwegen führen würde.

4.3 LNG-Lieferung

Kurzfristig (bis 2016) werden im Mittleren Osten keine zusätzlichen Verflüssigungskapazitäten aufgebaut und die Zubauten im Atlantikraum sind mit einem Plus von 18% überschaubar. Sofern in Katar das Moratorium beendet wird, könnte im kurzfristigen Zeitraum bis 2016 dort ebenfalls wieder

Die Weltendarren nach LNG soll von heute etwa 400 Mrd. m³ auf 566 Mrd. m³ in 2020 um über 40% ansteigen. Im Zeitraum 2010-2020 soll der LNG-Verbrauch in Europa von etwa 85 Mrd. m³ auf 161 Mrd. m³ um fast 90% ansteigen und damit den LNG-Versorgungsbeitrag von 19% auf 24% erhöhen (siehe auch Abbildung 6) [Cedigaz 2011]. Trotz all dieser Wachstumsraten wird LNG auch in 2020 noch kein voll globalisierter Markt sein und die LNG-Erzeugung auch 2020 noch mit 50% in der Hand von den drei größten Erzeugerländern liegen (Australien, Malaysia, Katar) [Cedigaz 2011]. Daher könnte bei einem Anstieg der Nachfrage in Europa zukünftig die Verflüssigung vor Ort eine relevante Rolle einnehmen.

Tabelle 4: Zusätzliche LNG Verflüssigungskapazitäten 2011 bis 2016

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Basin including</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>20.3</td>
<td>0.0</td>
<td>+5.2</td>
<td>+9.2</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>Angola</td>
<td>0.0</td>
<td>+5.2</td>
<td></td>
<td></td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>Middle East</td>
<td>100.4</td>
<td>100.4</td>
<td>100.4</td>
<td>100.4</td>
<td>100.4</td>
<td>100.4</td>
</tr>
<tr>
<td>Pacific Basin including</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>19.5</td>
<td>+4.3</td>
<td>+3.0</td>
<td>+5.0</td>
<td>+11.1</td>
<td>48.4</td>
</tr>
<tr>
<td>Papua New-Guinea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+4.5</td>
<td>9.0</td>
</tr>
<tr>
<td>World total</td>
<td>279.8</td>
<td>289.3</td>
<td>298.5</td>
<td>303.5</td>
<td>330.7</td>
<td>343.7</td>
</tr>
</tbody>
</table>

Quelle: [Cedigaz 2011]
4.4 LNG-Anlandung

² BTU ist die Wärmeenergie, die benötigt wird, um ein britisches Pfund Wasser um 1 Grad Fahrenheit zu erwärmen.
1 MMBtu = 1.000.000 Btu = 1055,05585262 MJ = 293,071 kWh
4.5 Geplante regulatorische und Infrastrukturinitiativen

4.5.1 EU-Infrastrukturrichtlinie (AFID, Entwurf)

- Die Mitgliedstaaten sorgen dafür, dass spätestens ab dem 31. Dezember 2030 eine LNG-Tankstelleninfrastruktur für See- und Binnenhäfen verfügbar steht, die einen Schiffsverkehr innerhalb der Seehäfen des Kernnetzes des transeuropäischen Verkehrsnetzes (TEN-V) ermöglicht. Wo erforderlich sollen die Mitgliedsstaaten mit ihren Nachbarn kooperieren, um eine angemessene Abdeckung des Betankungsnetzes sicherzustellen.

- Die Mitgliedstaaten sorgen dafür, dass spätestens ab dem 31. Dezember 2030 in den Binnenhäfen des TEN-V Kernnetzes (Abbildung 7) eine angemessene Zahl an LNG-Tankstellen für die Binnenschifffahrt zur Verfügung stehen. Wo erforderlich sollen die Mitgliedsstaaten mit ihren Nachbarn kooperieren, um eine angemessene Abdeckung des Betankungsnetzes sicherzustellen.

- Die Mitgliedstaaten arbeiten zusammen, um sicherzustellen, dass bis zum 31. Dezember 2030 eine ausreichende Zahl an öffentlich zugänglichen LNG-Betankungsmöglichkeiten entlang der TEN-V Hauptkorridore errichtet wird, damit diese von mit LNG-betriebenen schweren Nutzfahrzeuge befahren können und ein unionsweiter Fahrzeugbetrieb ermöglicht wird.
Abbildung 7: Deutsche Häfen im TEN-V Kernnetz

4.5.2 LNG Blue Corridors Project

Abbildung 8: Angedachte Transportkorridore und Standorte von LNG-Tankstellen in Europa im Rahmen des „LNG Blue Corridors Project“

Quelle: [Lage 2012]

5 Stand der Technik bei Antrieben und Infrastruktur

In diesem Kapitel wird der Stand der Technik für den LNG-Einsatz in den Themen Antriebstechnik, die Kraftstoffversorgung und -speicherung sowie Sicherheit beschrieben. Es werden dazu die Vor- und Nachteile von Technologien, die Möglichkeiten und Grenzen für den Einsatz dargestellt. Die Beschreibung erfolgt jeweils getrennt für die See- und Binnenschifffahrt sowie schwere Nutzfahrzeuge in Unterkapiteln. Im letzten Unterkapitel 5.3 wird abschließend eine Zusammenfassung je Verkehrsträger gegeben.

5.1 Technische Aspekte für den Einsatz von LNG in der Seeschifffahrt

Tabelle 5: Motorenkonzepte für den LNG-Einsatz in Seeschiffen

<table>
<thead>
<tr>
<th></th>
<th>Dual-Fuel-Motor</th>
<th>Gas-Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-Takt-Motor</td>
<td>4-Takt-Motor</td>
</tr>
<tr>
<td>Hochdruck-Motoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbrennungsprozess:</td>
<td>Diesel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diesel (MGO/HFO) oder Otto (Methan)</td>
<td>Otto</td>
</tr>
<tr>
<td>Max. 80% Methan, Min. 20% Diesel oder Schweröl unter Vollast</td>
<td>99% Methan, 1% Diesel oder/ Schweröl (Pilot Fuel) unter Vollast</td>
<td>99% Methan, 1% Diesel oder Schweröl (Pilot Fuel) über den gesamten Leistungsbereich</td>
</tr>
<tr>
<td></td>
<td>100% Diesel/ Schweröl möglich (z.B. außerhalb der ECA-Zone)</td>
<td>Betrieb mit Diesel/ Schweröl nicht möglich</td>
</tr>
<tr>
<td>Zündung durch Diesel-/Schweröl- Einspritzung in den Brennraum</td>
<td>Zündung durch Diesel-/Schweröl-Einspritzung in eine Vorkammer („flüssige Zündkerze“)</td>
<td>Zündung durch Zündkerze</td>
</tr>
<tr>
<td>Abgasreinigung notwendig zur Einhaltung von IMO Tier III3</td>
<td>IMO Tier III3 wird erfüllt</td>
<td></td>
</tr>
<tr>
<td>Niederdruck-Motoren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimaler Methanschlupf4</td>
<td>Methanschlupf4 niedriger als bei 4-Takt-Gas-Ottomotor</td>
<td></td>
</tr>
<tr>
<td>Robust gegenüber der Gasqualität</td>
<td>Sensitiv auf die Gasqualität (bei Methanzahl > 80 ohne Leistungsabfall)</td>
<td>Relativ robust auf Gasqualität (bei Methanzahl > 70 ohne Leistungsabfall)</td>
</tr>
</tbody>
</table>

Quellen: [Wärtsilä 2013a], [Wärtsilä 2013b], [Wärtsilä 2011], [Marintek 2011], [RR 2003]

3 Der Tier-Standard (I-III) definiert die Menge an NOx (g/kWh), die in Emission Control Areas ausgestoßen werden darf. Der Tier III Standard wird ab 2016 gelten und reduziert die maximal zulässige NOx-Emission deutlich gegenüber Tier I und II.

4 Methanschlupf ist das an den Ventilen abgelassene unverbrannte Methan.

Die Befüllung der Tanks mit LNG kann nach [GL 2013, S. 13] auf vier möglichen Wegen geschehen:

1. die Betankung von einem kleinen LNG-Tanker,
2. die Betankung vom Lkw aus via Schlauchverbindung,
3. die Betankung via Schlauchverbindung zu einer festen Anlage (Terminal/Pipeline) und
4. über den Austausch der mobilen Tanks auf dem Schiff.

Abbildung 9: Varianten zur Bunkerung von LNG bei Seeschiffen

Quelle: adaptiert auf Basis von [GL 2012]

Tabelle 6: Vor- und Nachteile der LNG-Bunkermöglichkeiten nach Abbildung 9

<table>
<thead>
<tr>
<th>Befüllungsmodus</th>
<th>Vorteile</th>
<th>Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Schiff – Schiff</td>
<td>Flexibilität, Hohe Bunkerraten, Große Bunkervolumina, Bunkern auf Reede möglich</td>
<td>Teure Infrastruktur</td>
</tr>
<tr>
<td>2 Lkw – Schiff</td>
<td>Flexibilität, Geringe Infrastrukturkosten</td>
<td>Geringe Transferr mengen, Geringe Bunkerraten</td>
</tr>
<tr>
<td>3 Terminal – Schiff</td>
<td>Verfügbarkeit, Hohe Bunkerraten, Große Bunkervolumina</td>
<td>Feste Pier, Blockierung von Hafenfläche, Teure Infrastruktur, Zweites Anlegen</td>
</tr>
<tr>
<td>4 Mobile Tanks</td>
<td>Einfache Logistikketten (Gefahrgut-container), Normaler Hafenumschlag, Hohe Verfügbarkeit</td>
<td>Teure Tanks, Hoher Aufwand für An- und Abschlagen</td>
</tr>
</tbody>
</table>

Quelle: eigene Darstellung nach [GL 2012]

- Die Nutzung von LNG als Schiffs-Kraftstoff und die Bunkerprozesse sind nicht von der IMO geregelt und damit ist LNG formal betrachtet nicht als Kraftstoff vorgesehen.
- Der zukünftige technische Bericht der ISO zu Bunkerprozessen wird international für allgemeine Standards und Gesetze maßgeblich sein.
- Eine konzeptuelle Brücke zwischen der Behandlung von LNG als Fracht und LNG als Kraftstoff muss noch vollständig erarbeitet werden.
- Die Prozesse zur Kopplung/Abkopplung von mobilen LNG-Tanks sind weder im aktuellen IGF Code noch im technischen Bericht der WG 10 des ISO/TC 67 beschrieben.
- Das Fehlen entsprechender Regeln zum Transport von LNG auf Europäischen Wasserwegen begründet, dass Konstruktionsanforderungen für Binnenschiffe noch nicht verfügbar sind.
- Best Practice kann helfen für die Entwicklung von kleineren Bunkerstationen im Rahmen des derzeit breiten Rahmens von nationalen Regeln.
- Trotz verschiedener industriegeführter Initiativen fehlt es an allgemeinen Hafenregeln für Bunkerprozesse (insbesondere Risiko-Bewertungskriterien und Sicherheitsregeln jeglicher Art sind benötigt).

- Anforderungen an die Weiterbildung der Besatzung bzgl. der Nutzung von LNG als Fracht in der Binnenschifffahrt werden benötigt.

- Es fehlt an einem internationalen Standard oder Regelwerk für die Spezifikation von LNG als Kraftstoff.

- Weiterhin bedarf es eines Standards oder Regelwerks für die sichere Entnahme von LNG als Kraftstoff.

- Es fehlt an einem Standard oder Regelwerk für die Sicherheitstechnik und der Ausrüstungsanforderungen zur Überwachung der Prozesse (inkl. Emergency Shut Down (ESD)).

- Prozeduren und Ausrüstung für die Messung des Gases fehlen.

- Praktische Richtlinien oder Regelwerke zur Vermeidung potenzieller negativer Umwelteffekte durch den Methanaustritt werden benötigt.

Abbildung 10: Ausbauvorhaben für LNG-Terminals im Nord- und Ostseeraum

Quelle: [GL 2012]

- Für die Schiffsbetreiber ist die Umstellung auf alternative Kraftstoffe/Bereinigung der Abgase eine Investition. Ein Pay-back gibt es nicht im eigentlichen Sinne, nur ein Vergleich von Investitions- und Betriebskosten zwischen den Alternativen.
Viele Prozesse ändern sich (z.B. braucht das Bunkern von LNG länger als das von Öl), was zusätzliche Kosten verursacht. Bei LNG gibt es noch keine eindeutigen Prozesse, was eine Kalkulation der Investition erschwert.

Marine Diesel Oil ist attraktiv als 'Wait-And-See'-Strategie für Schiffsbetreiber, weil LNG noch strukturelle Herausforderungen zu lösen hat.

Für den LNG-Infrastrukturaufbau in Häfen sind folgende Hinweise erarbeitet worden [DMA 2012, S. 146 ff.]:

- Die Beschaffenheit der einzelnen Häfen, um zusätzlich LNG-Terminals parallel zur Versorgung mit konventionellen Kraftstoffen aufzubauen, ist eine wesentliche Entscheidungsgröße für die Eignung von Häfen.
- Die wahrscheinlichste, erste Nachfrage wird von Schiffen mit festen und relativ kurzen Routen kommen, insbesondere im Ostseeraum, oder in der Küstenschifffahrt in der Nordsee.
- Die Versorgung von unregelmäßig einlaufenden Schiffen wird nur mit kleinen/mittleren Tanks oder Tank-Schiffen möglich sein. Eine vorrausschauende Planung der Nachfrage und Anpassung des Angebots sind wichtig in der Pionierphase von LNG.
- Kleinere und mittlere Terminals werden sich nur mit einer gleichzeitigen landseitigen Nachfrage rechnen. Der Einbezug entsprechender Akteure und dieser Nachfrage ist wichtig für den wirtschaftlichen Infrastrukturaufbau.

Die Qualität des Gases (Methanzahl) ist beim Infrastrukturaufbau bzw. bei der Versorgung der Infrastruktur einrichtungen mit LNG ein weiterer zu beachtender Aspekt, weil die nutzbaren Motoren (siehe Kapitel 5.1) von der verfügbaren Methanzahl abhängig sind. Die Methanzahl (MN) ist durch die natürliche Erdgaszusammensetzung der jeweiligen landeseigenen Ressource abhängig (z.B. Trinidad mit MN 87,4 oder Nigeria mit MN 69,5 [MARINTEK 2011, S. 17].

Zusammenfassend lässt sich zur schiffs- und infrastrukturseitigen Technik aussagen, dass diese dem Markt jeweils in ausreichender Qualität und Variantenvielfalt für die Nutzung von LNG als Kraftstoff zur Verfügung stehen. Beschränkende Hürden sind jedoch nicht-technische, formelle Einrichtungen wie Regelwerke, Richtlinien, Standards etc. Teilweise stellen diese sogar eine harte Schranke für den Einsatz von LNG in der Seeschifffahrt dar.

Ergänzend zur schiffs- und infrastrukturseitigen Technik werden nun die Bunkerprozesse und LNG-Lagerung sowie deren Entwicklungspotenziale beschrieben.

In einer aktuellen Studie für die European Maritime Safety Agency (EMSA), die im Februar 2013 veröffentlicht wurde, illustriert der Germanische Lloyd 20 verschiedene denkbare Aktivitäten in einem Hafen im Zusammenhang mit der Nutzung von LNG, woraus auch neue Dienstleistungen und Einnahmequellen rund um LNG entstehen können.

Um konkurrenzfähig gegenüber konventionell betriebenen Schiffen zu sein, muss die Betankung von LNG ebenso reibungslos funktionieren, wie der standardisierte Umgang mit konventionellen Kraftstoffen. Das heißt, dass parallel zur Betankung eine zügige Be- und Entladung von Frachten und ein sicheres Zusteigen der Passagiere möglich sein müssen [GL 2013].

(Schweden), Lübeck/Travemünde (Deutschland) und Swinemünde (Polen) ein prinzipiell vorhandenes Potenzial zur Vorhaltung von LNG. Die nächsten Schritte seien abhängig vom jeweiligen Standort, die genaue Lokalisierung und der Bau eines LNG-Terminals (in Bergen existiert bereits ein Terminal), die Vereinbarung von langjährigen Lieferverträgen mit Reedereien, um Planungssicherheit zu schaffen, sowie der Ausbau des Einsatzes von LNG insbesondere auf Routen im Nahbereich. Mit Blick auf die Hansestadt Lübeck spricht vor allem die große und wachsende Flotte an RoRo- und RoPax-Fährn, die den Hafen regelmäßig mit zahlreichen Destinationen in Nordeuropa verbinden, für die Verwendung von LNG. Da die Schiffe im Mittel jedoch vergleichsweise jung sind ist mit einer Umstellung der Schiffe auf die LNG-Technologie nur schrittweise zu rechnen [MAGALOG 2008].

5.2 Technische Aspekte für den Einsatz von LNG in der Binnenschifffahrt

Bisher werden auf dem Markt noch vergleichsweise wenige LNG-Antriebe für Binnenschiffe angeboten. Antriebskonzepte, die derzeit eingesetzt werden können, umfassen:

- Mono-Fuel-Motoren, und
- Dual-Fuel-Motoren

LNG wird in Binnenschiffen in sogenannten Kryotanks gespeichert. Trotz der wesentlich höheren Dichte von LNG gegenüber beispielsweise CNG erfordert LNG für die gleiche Energiemenge dennoch das 1,8 fache Volumen von Diesel. Dieser zusätzliche Platzbedarf kann vor allem bei Schubbooten und kleineren Schiffen schwer umgesetzt werden. Auch sind die Investitionskosten für die Kryotanks höher als für Dieseltanks oder bspw. Methanol [Panteia 2013; TNO 2011].

- Menschliches Versagen, z.B. Fehler im Manövrieren der Schiffe und in der Kommunikation zwischen den einzelnen Parteien (Bunkerschiff, Empfängerschiff, Hafenbehörde).
- Technische Fehler, z.B. System- und Maschinenausfälle bzw. Fehlfunktionen

Weitere wichtige Vorschriften, die den Einsatz von LNG in der Binnenschifffahrt betreffen, umfassen:

- Bau und Ausrüstung von Binnenschiffahrtsordnung geregelt (EU-Vorschriften)
- LNG als Brennstoff für Binnenschiffe nicht zulässig (Flammpunkt unter 55°C)
- Genehmigung für Bunkervorgang und -ort wird von der örtlichen Hafenbehörde erteilt

5.3 Technische Aspekte für den Einsatz von LNG bei schweren Nutzfahrzeugen

Die Option der Verwendung von Biogas oder EE-Methan in Form von LNG kann jedoch den Weg ebnen, um langfristig auch für schwere Nutzfahrzeuge nahezu CO₂-neutrale Antriebstechnik zu realisieren. Die Vor- und Nachteile sowie die Wirtschaftlichkeit in Verbindung mit Nutzeranforderungen müssen im Rahmen einer langfristigen Dekarbonisierungsstrategie gegenüber weiteren Alternativen wie erneuerbaren Flüssiggasstoffen (z.B. Biodiesel, Power-to-Liquids) oder Wasserstoff und
Brennstoffzellen abgewogen werden. Jeder weitere Energiewandlungsschritt über die Erzeugung des ersten speicherbaren Mediums (i.e. Wasserstoff) hinaus bedeutet weitere Primärenergieverluste, z.B. für Methanisierung, Verflüssigung oder Synthese zu flüssigen Kohlenwasserstoffen. Diese steigen insbesonderen dann deutlich an, wenn CO₂ zur weiteren Synthese aus der Luft gewonnen werden muss. Weitere Detailinformation hierzu können der MKS-Studie Erneuerbare Energien im Verkehr entnommen werden.

Die Vorteile bzw. Treiber der Nutzung von LNG sind im Kapitel 3 (Treibber) benannt. Es müssen jedoch auch die Nachteile bei der Nutzung von LNG bei schweren Nutzfahrzeugen berücksichtigt werden:

- Reine Gasmotoren besitzen bis auf wenige Ausnahmen (z.B. Cummins Westport ISX G 12.0) einen geringeren Wirkungsgrad als Dieselmotoren.

- Die LNG-Tanks am Fahrzeug sind schwerer als Tanks für Dieselkraftstoff, wodurch die zulässige Nutzlast der schweren Nutzfahrzeuge etwas geringer ausfällt.

- Der Kraftstoff LNG erwärmt sich mit der Zeit im Tank, wodurch sich im Tank der Druck erhöht. Wird der Druck zu hoch, dann wird automatisch über ein Ventil Erdgas (Treibhausgas) an die Umgebung abgegeben. Je nach Abgabetemperatur des LNG beim Betanken sind Standzeiten bis zu wenigen Tagen ohne Überdruckablassen möglich. Bei einer absehbaren Standzeit von 2-3 Tagen wird bereits empfohlen den Tank nur zwischen 50-70% zu befüllen; bei absehbar längeren Standzeiten ist ein entsprechend weniger befüllter Flüssigerdgastank vorzusehen [Indox 2013]. Nach Angaben von Daimler werden in den USA die geforderten 5 Tage Haltezeit (Zeit bis das Sicherheitsventil öffnet und Methan abgelassen wird) erreicht [Daimler 2013].

Neben der Verteilung von LNG über Tankstellen, die das Erdgas vor Ort zu LNG verflüssigen, besteht die Option, LNG aus Tanklagern ausgehend von Seehäfen und ggf. später auch von Binnenhäfen per Tanklastzug zu verteilen. Diese Option erfordert einen entsprechenden Ausbau der Infrastruktur und einer Logistik, die eine flächendeckende Versorgung ermöglicht. Der Ausbau einer solchen Infrastruktur erscheint nach Aussagen von Experten auf dem Workshop des BMVBS am 05. September 2013 dann sinnvoll, wenn zeitgleich die Infrastruktur in Binnenhäfen aufgebaut wird.

5.4 Zusammenfassung zum Stand der Technik für den LNG-Einsatz

In der Binnenschifffahrt kann LNG aus technischer Sicht bereits heute eingesetzt werden. So sind die benötigten Antriebs- und Kraftstoffspeichertechnologien sowie Betankungsmöglichkeiten ver-

6 Szenarien zur Entwicklung der Energienachfrage nach LNG

Im Folgenden werden mögliche Szenarien zur Energienachfrage nach LNG im Jahr 2030 untersucht.

Die Seeschifffahrt wird in der Berechnung der Energienachfrage gesondert betrachtet, da Seeverkehrsre nicht nur auf deutschem Hoheitsgebiet, sondern auch international relevant sind. Eine mögliche Entwicklung wird daher ausgehend von Literaturrecherchen für den Nord- und Ostseeraums diskutiert (Kapitel 6.1).

Anhand der Ergebnisse wird diskutiert, in welchem Zusammenhang die LNG-Nachfrage dieser Sektoren aus Sicht der Verfügbarkeit und Versorgungssicherheit sowie der Einbindung erneuerbarer Energien in den Verkehrssektor zu bewerten ist (Kapitel 6.3). Weiterhin kann auf dieser Basis der mögliche Beitrag zur Umweltentlastung, insbesondere der Reduktion von Treibhausgasen, in Deutschland aufgezeigt werden (Kapitel 7).

6.1 Energienachfrage der Seeschifffahrt im Nord- und Ostseeraum

Für die Seeschifffahrt existiert eine datenseitige Grenze, um nationale Verbräuche in die Berechnung von Emissionen und im Rahmen dieser Studie in die Szenarien zu integrieren. Die Grenzen sind:

- Die Seeschiffe variieren extrem in Größe, Motorenleistung, Fahrmodus und damit im Verbrauch. Einen spezifischen Verbrauch für alle Seeschiffe kann nicht fundiert ermittelt werden.

- Die Fahrleistung und Verkehrsleistung von Seeschiffen auf deutschen Hoheitsgewässern wird nicht statistisch erfasst.

Daher wurde sich im Rahmen dieser Kurzstudie dazu entschieden, ausgehend von einer Beschreibung eines Einsatzpotenzials von LNG in der Seeschifffahrt für den gesamten Nord- und Ostseeraum

aus bestehenden Studien, eine LNG-Nachfrageabschätzung für das Jahr 2030 im Folgenden unab-
abhängig von der Ursprungs- nation des Verkehrs zu skizzieren.

ten. Weiterhin behandelt die Seeverkehrsprognose lediglich die güterverkehrsrelevanten Verkehre. Schiffsverkehre zum Personentransport sind aus den Betrachtungen ausgeklammert [MWP et al. 2014], diese sind jedoch im Nord- und Ostseeraum von hoher verkehrlicher Bedeutung (siehe z.B. [Magalog 2008]). Es wurde im Rahmen dieser Studie auch durchdacht, ob ein heuristischer Berech-
artigen Indikatoren festgestellt werden, so dass die Energienachfrage der Seeschifffahrt in den fol-
genden Szenarien von der VP2030 losgelöst bestimmt wird.

bot würde wiederum auch andere Schiffstypen und flexible Einsatzrouten für die LNG-Nutzung attrak-
tiver machen, bis hin zur globalen Verfügbarkeit und Nutzung.

Derzeit ist die Umrüstung auf LNG für die Schiffsbetreiber ein Mehraufwand, welcher im direkten Kostenvergleich zu konventionellen Kraftstoffen nachteilig ist. Neben LNG stehen auch der Einsatz von Scrubber-Technologien und Marine Diesel Oil als Alternativen zu LNG zur Verfügung, um auf Regelungen wie Emission Control Areas zu reagieren. Entscheidender Faktor für den Einsatz von LNG in der Seeschifffahrt ist der Kostenvergleich zwischen den Alternativen.

nannt, was bedeutet, dass mittelfristig keine vollständige Umstellung der Flotte auf LNG stattfindet.

Tabelle 7: Kraftstoffverbrauch (Schweröl) in Tonnen pro Jahr nach Schiffstyp und Fahrgebiet in 2007

<table>
<thead>
<tr>
<th>Schiffstyp</th>
<th>Nordsee</th>
<th>Ostsee</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoRo ships</td>
<td>557.000</td>
<td>645.000</td>
<td>1.202.000</td>
</tr>
<tr>
<td>RoPax and super fast ships</td>
<td>719.000</td>
<td>1.185.000</td>
<td>1.904.000</td>
</tr>
<tr>
<td>Summe</td>
<td>1.276.000</td>
<td>1.830.000</td>
<td>3.106.000</td>
</tr>
</tbody>
</table>

Quelle: eigene Darstellung nach [Magalog 2008]

Abbildung 11: Erwartete Entwicklung der LNG-Nachfrage im Nord- und Ostseeraum bis 2030

Quelle: [DMA 2012]

⁶ SECA: Abkürzung für Sulphur Emission Control Area.

Zusammenfas send zeigt sich, dass die erwartete Nachfrage an LNG im maritimen Sektor im Nord- und Ostseeraum im Jahr 2030 ein Vielfaches (je nach Szenario das 2-12 fache) des inländischen Bedarfs in Deutschland ausmachen könnte (vgl. Kap. 6.3). Damit ergibt sich die Fragestellung, wie groß tatsächlich der politisch mögliche Hebel in Deutschland ist bzw. mit welcher Durchsetzungskraft man Deutschland in der LNG-Frage positionieren möchte, da sich das LNG-Angebot zur Nachfrageentwicklung grundsätzlich auf alle oder auf wenige Anrainer-Staaten der Nord- und Ostsee verteilen kann. Für LNG-Anbieter ergibt sich als wahrscheinlich interessantester Markt die Seefahrt gegenüber der Binnenschifffahrt und schweren Nutzfahrzeugen.

Für einen adäquaten Vergleich müssten die Systemgrenzen jedoch auf die weiteren Anrainerstaaten erweitert werden. Auch ist die Schaffung der Betankungsinfrastruktur in möglichst vielen europäischen Seehäfen eine wichtige Voraussetzung, dass LNG als Kraftstoffoption von den Reedern angenommen wird.

6.2 Szenariendefinition für Binnenschiffe und schwere Nutzfahrzeuge

Prinzip für die Berechnung von Inlandszenarien für den Straßengüterverkehr und die Binnenschifffahrt ist eine Ermittlung der Kraftstoffnachfrage über die erbrachten Fahr- und Transportleistungen sowie bekannte spezifische Verbrauchsfaktoren. Als Grundlage hierfür dienen Vorarbeiten im Rahmen des TREMOD-Modells (Transport Emission Modell), die unter anderem der nationalen Inventarberichterstattung für die Treibhausgasemissionen in Deutschland dienen [IFEU 2011, 2012].

6.2.1 Einsatz von LNG in der Binnenschifffahrt

Zum aktuellen Stand scheint ein Einsatz von LNG in der Binnenschifffahrt nur für einen Teil der Schiffsflotte umsetzbar. Gründe dafür sind vor allem:

- Zusätzlicher Raumbedarf für die LNG-Tanks: Der Mehrbedarf an Tankvolumen kann voraussichtlich beim Schiffsneubau berücksichtigt werden, bei umzurüstenden sowie bei kleineren Schiffen vermutlich aber zu Lasten der Ladekapazität gehen. Vorteilhaft für die Unterbringung der Tanks dürften dagegen Tank- und Containerschiffen sein. Während bei Ersteren die Tanks auf dem Deck angebracht werden können, könnten bei Letzteren auch LNG-Container tanks eingespachtelt werden.

Nach [Panteia 2013] ist der Einsatz von LNG in Neubauten für Schiffe ab 110 m Länge mit einer Tragfähigkeit von 2.750 Tonnen oder höher sowie für Schubbote mit einer Leistung über 2.000 kW geeignet. Bei Schiffen ab 135 m (oder ca. 5.000 t) dürfte auch eine Umrüstung mit LNG wirtschaftlich sein. Grundlage der Analyse war hierbei ein Vorteil bei den Kraftstoffkosten durch LNG von 20% gegenüber
Diesel, was einer konservativen Preisentwicklung für Diesel entspricht. Bei höheren Kostenvorteilen für LNG könnten auch kleinere bzw. bestehende Schiffe verstärkt wirtschaftlich mit LNG betrieben werden.

Weiterhin dürfte sich LNG sowohl aus Gründen des Platzbedarfs als auch der Wirtschaftlichkeit insbesondere für Tank- und Containerschiffe lohnen. Güterschiffe mit Trockenfracht haben geringere Betriebszeiten und Kraftstoffkosten, im Zeitraum von 20 Jahren dürfte sich aber auch bei Güterschiffen ein Kostenvorteil durch LNG ergeben, so dass in einigen Fällen auch bestehende Motorschiffe auf LNG umgerüstet werden können [Panteia 2013].

Der Verbrauch von Binnenschiffsmotoren liegt meist zwischen 180 g und 220 g Diesel pro kWh, vereinfacht wird oft ein Mittelwert von 200 g/kWh angenommen [IFEU 2011]. Um eine Hochrechnung des Kraftstoffverbrauchs anhand der Schiffsaktivität zu ermöglichen, sind Verbrauchssangaben pro Transportleistung (z.B. pro tkm) jedoch hilfreicher. Als Mittelwert für die Binnenschifffahrt in Deutschland werden derzeit 8,5 g/tkm oder 0,365 MJ/ tkm angenommen [IFEU 2011]. Diese Größenordnung lässt sich sowohl mittels Hochrechnung über die erbrachte Transportleistung und spezifischer Verbrauchswerte als auch über eine Rückrechnung mittels der getankten Kraftstoffmengen belegen [vgl. IFEU 2011; ZKR 2013].
Laut [TNO 2011a] konnte anhand der Verbrauchsdaten verschiedener Motorenhersteller in verschiedenen Lastpunkten für LNG ein mittlerer Wirkungsgrad von 43% ermittelt werden, während ein vergleichbarer Dieselmotor bei 44% liegt. Vereinfachend wird daher für LNG der gleicher energetische Kraftstoffverbrauch wie bei Dieselmotoren angenommen.

Tabelle 8: Zukünftige Kraftstoffverbrauchsreduktion in der Binnenschifffahrt

<table>
<thead>
<tr>
<th>Zeithorizont</th>
<th>[ZKR 2012]*</th>
<th>Diese Studie – Gesamtflotte</th>
<th>Diese Studie – Neubauten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010 bis 2050</td>
<td>2010 bis 2030</td>
<td></td>
</tr>
<tr>
<td>Technische Maßnahmen</td>
<td>20%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Betriebliche Maßnahmen</td>
<td>10%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Gesamtpotenzial</td>
<td>15%</td>
<td>24%</td>
<td></td>
</tr>
</tbody>
</table>

* konservatives Szenario, ohne Einfluss der Tragfähigkeitsvergrößerung

Hinweis: Das Gesamtpotenzial ergibt sich aus der Multiplikation der Einzelpotenziale

Die Tendenz der letzten Jahre zeigt, dass der Binnenschiffsverkehr zunehmend von größeren Schiffen geleistet wird. So nahm im deutschen Schiffsbestand die mittlere Tragfähigkeit von 1990 bis 2010 von 1.000 t auf 1.300 t bzw. um 1,5% pro Jahr zu [IFEU 2011]. Bei der gesamten westeuropäischen Flotte, darunter vor allem niederländische Schiffe, welche auch in der deutschen Binnenschifffahrt dominieren, sind sogar etwas höhere Steigerungen von 1,6% bis 1,8% pro Jahr zu verzeichnen [ZKR 2012].

7 Es wurde jeweils die Daten eines reinen Gasmotors und eines Dual Fuel-Motors mit der eines Dieselmotors, jeweils im Nennleistungsbereich von 1.100-1.200 kW, ausgewertet.
Für die zukünftige Entwicklung der Binnenschifffahrt wird angenommen, dass die Anzahl größerer Schiffe weiter zunimmt, während ein Großteil kleinerer und älterer Schiffe verschrottet wird [Panteia 2013, NEA 2011]. Damit nimmt die gesamte Tragfähigkeit der europäischen Flotte innerhalb der Schiffe ≥2.500 Tonnen zu, bei kleineren Schiffen hingegen deutlich ab (siehe Tabelle 9). Für die Verkehrsleistung im Jahr 2030 wird angenommen, dass die Zuwachsraten der Flottenkapazität auch auf den Anteil der Transportleistung in Deutschland übertragen werden kann.

Tabelle 9: Daten und Annahmen zur Entwicklung der Schiffsgröße in der Binnenschifffahrt

<table>
<thead>
<tr>
<th>Jahr</th>
<th><2500 t</th>
<th>≥2500 t</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil der Flottenkapazität (EU)</td>
<td>2012</td>
<td>53%</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>36%</td>
<td>64%</td>
</tr>
<tr>
<td>Anteil der Transportleistung (DE)</td>
<td>2010</td>
<td>54%</td>
<td>46%</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>38%</td>
<td>62%</td>
</tr>
</tbody>
</table>

Eine Beschränkung des Einsatzpotenzials anhand der Schiffsgröße (nur >2.500 t) wird in beiden Szenarien angenommen. Unterschieden werden soll daher vor allem im Anteil von LNG an den Neubauten und in der Umrüstung bestehender Schiffe. Hierbei gelten folgende Annahmen:

- **Moderates Szenario**
 - 50% der Neubauten >2.500 t (zwischen 2010 und 2030) mit LNG
 - 10% der bestehenden Tank- und Containerschiffe >2.500 t mit LNG

- **Forciertes Szenario**
 - 75% der Neubauten >2.500 t (zwischen 2010 und 2030) mit LNG
 - 50% der bestehenden Tank- und Containerschiffe >2.500 t mit LNG
 - 25% der bestehenden Güterschiffe >2.500 t mit LNG

Um den Neubau von potenziell mit LNG betriebenen Schiffen zu berücksichtigen werden vereinfachend folgende Annahmen getroffen:

- Die Transportleistung pro Schiff bleibt konstant, der Anstieg der gesamten Transportleistung erfordert also eine Flottenvergrößerung, welche durch neu gebaute Schiffe (Baujahr 2010 oder später) erfolgt.

8 Basierend auf den Flottendaten von [NEA 2011] für Schiffe der CEMT-Klasse V oder höher (entspricht mindestens einem großen Rheinschiff, d.h. ca. 2.750 t).
Die resultierende Aufteilung der Transportleistung auf Neubauten und bestehende Schiffe zeigt Abbildung 12. Durch die starke Zunahme der Transportleistung, die sich vor allem auf größere Schiffe verteilt, machen die Neubauten mit Baujahr 2010 oder höher fast 30% der Transportleistung aus.

Abbildung 12: Aufteilung der Transportleistung in Neubauten und ältere Schiffe im Jahr 2030

Da für die Nachrüstung bestehender Schiffe mit LNG auch die Schiffsarten (Container-, Tank- und Gütermotorschiffe) betrachtet werden, wird vereinfachend angenommen, dass die Aufteilung nach Schiffsarten für 2030 wie im Jahr 2010 ist.

Tabelle 10: Aufteilung der Transportleistung nach Schiffsarten (≥2.500 t) in 2010

<table>
<thead>
<tr>
<th>Schiffsart</th>
<th>Anteil der Transportleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containerschiffe</td>
<td>4%</td>
</tr>
<tr>
<td>Güterschiffe</td>
<td>62%</td>
</tr>
<tr>
<td>Tankschiffe</td>
<td>20%</td>
</tr>
<tr>
<td>Leichter/Verbände</td>
<td>14%</td>
</tr>
</tbody>
</table>

Quelle: [IFEU 2011]

6.2.2 Einsatz von LNG bei schweren Nutzfahrzeugen

Prinzipiell ist es bei entsprechenden Kostenvorteilen und der Kraftstoffverfügbarkeit für die Nutzer vorstellbar, dass vor allem Fernverkehrs-Lkw mit einer hohen jährlichen Fahreistung diese Technik schnell annehmen. Diese Fahrzeuge werden im Durchschnitt etwa alle 4-5 Jahre von den Nutzern durch neue ersetzt, so dass bereits nach 10 bis 15 Jahren ein erheblicher Marktanteil bei diesen Fahrzeugen erreicht werden kann. Wie hoch dieser konkret sein wird, kann aus heutiger Sicht nur durch Annahmen im Rahmen der beiden im nächsten Abschnitt besprochenen Szenarien geschätzt werden.

Folgende Annahmen werden der Entwicklung der Szenarien zu Grunde gelegt. Geht man von einer Reichweite von rein mit LNG fahrenden schweren Nutzfahrzeugen von 600-1.000 km pro Tankfüllung...
aus, reicht ein Tankstellennetz entlang der Autobahnen mit einem Abstand von ca. 250 km voraussichtlich aus. Diese sollten möglichst pro Fahrtrichtung entstehen, so dass in einem ersten Ausbauszenario ca. 30 LNG-Tankstellen vorzugsweise an Autohöfen notwendig sind, um einen großen Teil des Bundesautobahnnetzes abzudecken und Einzugsgebiete links und rechts der Autobahnen zu erschließen.

Basierend auf der Verfügbarkeit einer solchen angenommenen Tankstelleninfrastruktur könnte somit im Jahr 2030 neben Diesel auch LNG bereits bedarfsgerecht verfügbar sein, was bei den beiden folgenden Szenarien als gegeben angesehen wurde.

<table>
<thead>
<tr>
<th>Fahrleistungen von Fahrzeugen mit konventionellen und/oder alternativen Antrieben</th>
<th>N3 Lkw > 7,5 t zGG</th>
<th>N3 Sattelzug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil Fahrleistung mit Verbrennungskraftmaschinen (VKM)</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>davon Anteil an VKM Diesel</td>
<td>97%</td>
<td>95%</td>
</tr>
<tr>
<td>davon Anteil an VKM LNG</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>davon Anteil an Dual-Fuel-Antrieben</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Quelle: eigene Annahmen; zGG = zulässiges Gesamtgewicht

<table>
<thead>
<tr>
<th>Fahrleistungen von Fahrzeugen mit konventionellen und/oder alternativen Antrieben</th>
<th>N3 Lkw > 7,5 t zGG</th>
<th>N3 Sattelzug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil Fahrleistung mit Verbrennungskraftmaschinen (VKM)</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>davon Anteil an VKM Diesel</td>
<td>95%</td>
<td>80%</td>
</tr>
<tr>
<td>davon Anteil an VKM LNG</td>
<td>5%</td>
<td>20%</td>
</tr>
<tr>
<td>davon Anteil an Dual-Fuel-Antrieben</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Quelle: eigene Annahmen; zGG = zulässiges Gesamtgewicht

Weiterhin sind zur Bewertung beider Szenarien noch Annahmen zum Verbesserungspotenzial von Verbrennungskraftmaschinen sowohl bei Diesel- als auch bei Gasmotoren getroffen worden. Dabei wurde eine Studie der TU Wien verwendet, die die Effizienzpotenziale der einzelnen Verbrennungskraftmaschinen (VKM) analysiert [Nanupot 2011].

Tabelle 13: Verbrauchsreduktionspotenziale für die Fahrzeugklasse N3 (Diesel und LNG)

<table>
<thead>
<tr>
<th>Fahrzeugklasse</th>
<th>N3 Sattelzugmaschine bzw. Lkw > 7,5 t zGG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potenzial Diesel (moderat und forciert)</td>
<td>20,6%</td>
</tr>
<tr>
<td>Potenzial LNG inkl. Dual-Fuel-Antrieb (moderat und forciert)</td>
<td>28%</td>
</tr>
</tbody>
</table>

Quelle: eigene Annahme (für LNG) und Nanupot Studie (für Diesel) [Nanupot 2011]

Es wird davon ausgegangen, dass diese Effizienzpotenziale bis zum Jahr 2020 in den jeweiligen Fahrzeugklassen erschlossen werden können und in den dann verkaufenen Fahrzeugen realisiert sind bzw. im Falle von LNG ab dem Jahr 2020 eingeführt werden.

Sowohl Diesel als auch LNG können mit Bioanteilen vermischt werden. Außerdem kann synthetisch hergestelltes Gas aus erneuerbarem Strom zu LNG verflüssigt und beigemischt werden. Die Beimischung von erneuerbaren Energien verringert die CO₂ Emissionen in der Gesamtbilanz (Well-to-
Dies wurde für das Jahr 2030 mit nachfolgenden Annahmen berücksichtigt, wobei davon ausgegangen wurde, dass der Biokraftstoffanteil im Diesel aufgrund der technologischen Entwicklung bei der Erzeugung von Biokraftstoffen noch etwas gesteigert werden kann. Die Kosten für die Bereitstellung von Biodiesel nähern sich dabei den Kosten von fossilem Dieselkraftstoff an und die dazu erforderliche Biomasse bzw. Abfälle können so gewonnen werden, dass diese nicht mehr in Konkurrenz zur Nahrungsmittelherstellung stehen.

Tabelle 14: Szenario zur Nutzung von Beimischungsanteilen für Diesel und LNG im Jahr 2030

<table>
<thead>
<tr>
<th>Beimischungsquoten alternativer Kraftstoffe</th>
<th>N3 Lkw > 7,5 t zGG</th>
<th>N3 Sattelzug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiesel-Anteil VKM Diesel</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>Biomethananteil VKM LNG</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Quelle: eigene Annahmen

6.3 Energienachfrage des Binnenschiff- und Straßengüterverkehrs in Deutschland

Der gesamte Binnenschiffverkehr verursacht mit etwa 23 PJ nur etwa 3-4% des Energieverbrauchs des Straßengüterverkehrs. Unter Zugrundelegung eines Anstieges der Verkehrsleistung steigt der Gesamtkraftstoffverbrauch zukünftig weiter an. Im moderaten Szenario ergibt sich dabei ein LNG Verbrauch von 3 PJ bzw. ca. 13% der gesamten Binnenschifffahrt. Im forcierten Szenario beträgt der LNG-Verbrauch dagegen 8 PJ bzw. ca. 29% des Verbrauches der Binnenschifffahrt. Der Dieselverbrauch nimmt gegenüber 2010 geringfügig ab.

Abbildung 14: LNG Nachfrage für die Binnenschifffahrt in den Szenarien

Abbildung 15: LNG Nachfrage für den Straßengüterverkehr in zwei Szenarien

6.4 Gegenüberstellung der Nachfrage zum Potenzial für EE-Methan

7 Potenzielle Beiträge zu Emissionsreduktionen

Im folgenden Kapitel sollen die Umweltentlastungspotenziale von LNG untersucht werden. Der stärkere Fokus liegt, aufgrund der hohen Relevanz des Klimaschutzes, auf der potenziellen Minderung der Treibhausgasemissionen. Da aber auch die Luftschadstoffemissionen vor allem lokal Vielerorts in Deutschland eine Belastung darstellen, wird auch der potenzielle Beitrag zur Minderung der Schadstoffemissionen untersucht. Für beide Emissionsarten wird die jeweils aktuelle Situation den Szenarien bis 2030 gegenübergestellt. Hierbei können für die Seeschifffahrt zwar Technologiebewertungen vorgenommen werden jedoch keine auf Deutschland bezogene Auswertung (Allokation).

7.1 Methodik und Basisdaten zu den Treibhausgasemissionen

7.1.1 Allgemeine Emissionsfaktoren

Als Treibhausgasemissionen werden CO₂, Lachgas (N₂O) und Methan (CH₄) betrachtet. Diese werden in der Summe als CO₂-Äquivalente angegeben, wobei das GWP100 nach [IPCC 2007] zugrunde gelegt wird:

- CO₂: 1 g CO₂-Äquivalent/g
- CH₄: 25 g CO₂-Äquivalente/g
- N₂O: 298 g CO₂-Äquivalente/g

- Schweröl ohne Abgasnachbehandlung
- Dieselöl (MDO)
- Methan-Diesel-Gemisch
- Methan

Auf Immissionsseite wirken Rußemissionen insbesondere auf hellen Oberflächen und bei geringen meteorologischen Einflüssen verstärkend auf den Treibhausgaseffekt aus, wie z.B. auf Schnee-, Eis

9 Rußpartikelemissionen haben ebenfalls Treibhausgaswirkungen als Aerosol sowie als Ablagerung. Diese Effekte sind aktuell noch nicht ausreichend wissenschaftlich quantifiziert, d.h. es steht derzeit noch kein IPCC-Wert für die Treibhausgaswirksamkeit von Rußpartikelemisionen zur Verfügung.

Da Treibhausgase globale Auswirkungen haben, werden die Emissionen in der gesamten Wirkungskette, also von der Quelle bis zum Tank (WTT) und vom Tank zum Rad bzw. Propeller (TTW/TPP) betrachtet.

Die Bereitstellung des Kraftstoffes von der Quelle bis zum Tank (WTT) setzt sich aus verschiedenen Prozessen wie Förderung, Aufbereitung und Transport zusammen und muss daher für konkrete Pfade bzw. Routen abgebildet werden. Als Ergebnis wird die Summe aller Treibhausgase bezogen auf den Kraftstoffverbrauch (z.B. g/MJ) angeben.

Die Bereitstellung von LNG (WTT) setzt sich aus verschiedenen Prozessen wie Förderung, Aufbereitung und Transport zusammen und muss daher für konkrete Pfade bzw. Routen abgebildet werden. Als Ergebnis wird die Summe aller Treibhausgase bezogen auf den Kraftstoffverbrauch (z.B. g/MJ) angeben.

7.1.2 Bereitstellung von LNG (WTT)

Bei der Bereitstellung von LNG wird üblicherweise auf LNG über maritimen Import fokussiert, ggf. noch ergänzt um die Komponente Biomethan, z.B. [PwC 2013]. Mit Blick auf die besonderen Anforderungen und Chancen im Zuge der deutschen Energiewende, werden in dieser Studie weitere, besonders geeignete LNG-Versorgungsoptionen beleuchtet, wie z.B. die Verflüssigung in Deutschland bzw. „vor Ort“ sowie die Erzeugung von LNG aus erneuerbarem Strom (verflüssigtes EE-Methan).

Für die Bereitstellung von LNG wurden folgende Pfade bzw. Routen betrachtet:

- Erdgasverflüssigung in der Nähe der Erdgasfelder (z.B. Katar), Transport des verflüssigten Erdgases (LNG) in die EU, Transport des LNG mit einem Bunkerschiff zum zu betankenden Schiff über eine Entfernung von 5 km und Abgabe an das zu betankende Schiff
- Erdgasverflüssigung in der Nähe der Erdgasfelder (z.B. Katar), Transport des verflüssigten Erdgases (LNG) in die EU, Transport des LNG mit Tanklastzug zu einer LNG-Betankungseinrichtung am Hafen über eine Entfernung von 5 km und Abgabe des LNG an das zu betankende Schiff
- Erdgasverflüssigung in der Nähe der Erdgasfelder (z.B. Katar), Transport des verflüssigten Erdgases (LNG) in die EU, Transport des LNG mit einem Binnenschiff zu einer Betankungseinrichtung über eine Entfernung von 500 km und Abgabe an das zu betankende Schiff
- Erdgasverflüssigung in der Nähe der Erdgasfelder (z.B. Katar), Transport des verflüssigten Erdgases (LNG) in die EU, Transport des LNG mit Tanklastzug zu einer LNG-Betankungs-
einrichtung am Hafen oder LKW-Betriebshof über eine Entfernung von 500 km und Abgabe des LNG an das zu betankende Schiff oder des zu betankenden Lkw

- Erdgasfeld außerhalb der EU, Erdgastransport über Pipeline über eine Entfernung von 4.000 km, Verteilung des Erdgases an Erdgasverflüssigungsanlage vor Ort an den Betankungseinrichtungen am Binnenhafen
- Erdgasfeld außerhalb der EU, Erdgastransport über Pipeline über eine Entfernung von 4.000 km, Verteilung des Erdgases an Erdgasverflüssigungsanlage vor Ort an den Betankungseinrichtungen am Lkw-Betriebshof
- Produktion von Wasserstoff über Wasserelektrolyse mit anschließender katalytischer Methanisierung und Einspeisung in das Erdgasesnetz, Erdgasverflüssigung vor Ort an den Betankungseinrichtungen am Binnenhafen
- Produktion von Wasserstoff über Wasserelektrolyse mit anschließender katalytischer Methanisierung und Einspeisung in das Erdgasesnetz, Erdgasverflüssigung vor Ort an den Betankungseinrichtungen am Lkw-Betriebshof

Für die Bereitstellung des CO₂ für die katalytische Methanisierung wurden drei Varianten betrachtet:

- CO₂ aus Luft
- CO₂ aus Rauchgas
- CO₂ aus Biogasaufbereitung

Abbildung 17: Pfade bzw. Routen für die Bereitstellung von LNG von der Quelle bis zum Tank („Well-to-Tank“)

Der Kraftstoffbedarf des LNG-Hochsee-Tankschiffen (etwa 0,089 MJ pro MJ angeliefertes LNG inklusive Rückfahrt) wird teilweise durch verdampfendes LNG (etwa 54%) und teilweise durch Schweröl (etwa 46%) gedeckt. Die Transportentfernung (einfach) von Katar nach Zeebrugge beträgt etwa 13.000 km.

Das Bunkerschiff und das LNG-Binnentankschiff werden mit Dieselkraftstoff betrieben. Der Energie und die damit verbundenen Treibhausgasemissionen für die Bereitstellung von Dieselkraftstoff wurden aus [JEC 2013] entnommen.

Für die Verflüssigung vor Ort an der Betankungsanlage am Binnenhafen wurde auf Daten eines Anlagenherstellers (Galileo) zurückgegriffen. Der Stromverbrauch der Verflüssigungsanlage, Modell „CRYOBOX“, beträgt nach [Galileo 2013] 420 kWh pro 500 kg LNG, was zu etwa 0,060 MJ pro MJ LNG führt. Darüber hinaus sind sehr geringe Mengen an LPG und Schmiermittel erforderlich. Der Stromverbrauch liegt bei etwa 0,064 MJ pro MJ LNG. Der Strom für die Verflüssigung wird aus dem Stromnetz bezogen.

Der Stromverbrauch für die Wasserelektrolyse wird mit 4,5 kWh pro Nm³ Wasserstoff angenommen. Der Wasserstoff wird mit einem Druck von 3 MPa bereitgestellt (Druckelektrolyse). Die Anlage ist an das Mittelspannungsnetz angeschlossen.

Anschließend erfolgt die Methanisierung mit CO₂. Die Umsetzung von Wasserstoff zu Methan erfolgt über folgende Reaktion:

\[4 \text{H}_2 + \text{CO}_2 \Rightarrow \text{CH}_4 + 2 \text{H}_2\text{O} \text{ (gASF.)} \quad \Delta \text{H} = -165 \text{kJ}\]

Die Reaktion verläuft exotherm. Die katalytische Methanisierung erfolgt bei einer Temperatur von etwa 200 bis 400°C. Es werden Katalysatoren auf Basis von Ni oder Ru, Rh, Pt, Fe, und Co eingesetzt [Lehner 2012]. Die katalytische Methanisierung läuft bei einem Druck von 0,5 MPa ab.

Die CO₂-Abtrennung aus Luft erfolgt über Auswaschung mit Kalilauge (KOH) und Regenerierung des Waschmittels über Elektrodialyse. Der Stromverbrauch beträgt 8,2 MJ pro kg CO₂ [Sterner 2009]. Anschließend wird das CO₂ von Umgebungsdruck auf 0,5 MPa komprimiert.

Für den Fall, dass das für die Methanisierung erforderliche CO₂ aus der Biogasanlage kommt wurde angenommen, dass die Biogasanlage bereits mit einer Anlage zur Aufbereitung von Biogas zu reinem Methan für die Einspeisung in das Gasnetz ausgerüstet ist. Der Strombedarf der CO₂-Bereitstellung stammt aus der Komprimierung des CO₂ von Umgebungsdruck auf das Druckniveau von 0,5 MPa der Methanisierungsanlage.

Tabelle 15 zeigt die Energie- und Stoffströme für die Produktion von Methan aus H₂ und CO₂.

<table>
<thead>
<tr>
<th>I/O</th>
<th>Einheit</th>
<th>CO₂ aus Luft</th>
<th>CO₂ aus Abgas</th>
<th>CO₂ aus BGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>Input</td>
<td>MJ/MJ</td>
<td>1,200</td>
<td>1,200</td>
</tr>
<tr>
<td>CO₂</td>
<td>Input</td>
<td>kg/MJ</td>
<td>0,055</td>
<td>0,055</td>
</tr>
<tr>
<td>Strom für CO₂-Bereitstellung</td>
<td>Input</td>
<td>MJ/MJ</td>
<td>0,4590</td>
<td>0,0098</td>
</tr>
<tr>
<td>Wärme für CO₂-Bereitstellung</td>
<td>Input</td>
<td>MJ/MJ</td>
<td>-</td>
<td>0,2365</td>
</tr>
<tr>
<td>CH₄</td>
<td>Output</td>
<td>MJ</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Wärme</td>
<td>Output</td>
<td>MJ/MJ</td>
<td>0,200</td>
<td>0,200</td>
</tr>
</tbody>
</table>

Tabelle 15: Energie und Stoffströme bei der Produktion von Methan aus H₂ und CO₂

Das produzierte Methan wird über das Erdgasnetz zur Verflüssigungsanlage am Binnenhafen oder dem Lkw-Betriebshof transportiert.

Abbildung 18: Energieaufwendungen für ausgewählte CNG und LNG Bereitstellungspfade (einschließlich der im Kraftstoff enthaltenen Energie)

Abbildung 19: Treibhausgasemissionen für die LNG-Bereitstellung (einschließlich im Kraftstoff enthaltenen fossilen Kohlenstoffs)

Die Treibhausgasemissionen für die Bereitstellung und Nutzung von LNG aus Erdgas (WTT) liegt je nach Bereitstellungspfad zwischen 72 und 76 g CO₂-Äquivalent pro MJ LNG, wenn für den Strombezug der Verflüssigungsanlagen vor Ort der Strommix 2030 verwendet wird. Die Unterschiede zwischen den unterschiedlichen Bereitstellungsketten sind somit gering. Wird der heutige Strommix für die Verflüssigungsanlage verwendet, ergeben sich Treibhausgasemissionen von 73 bis 79 g CO₂-Äquivalent pro MJ LNG. Wird erneuerbarer Strom zur Produktion von synthetischem Methan über Elektrolyse und nachgeschaltete Methanisierung inklusive CO₂-Bereitstellung kommt es zu deutlich geringen Treibhausgasemissionen von etwa 4 g CO₂-Äquivalent pro MJ LNG. Sie resultieren aus dem Betrieb der Verflüssigungsanlage vor Ort am Binnenhafen mit Strom aus dem Strommix 2030. Der unterschiedliche Energieeinsatz für die Bereitstellung des CO₂ wirkt sich nicht auf die Emissionen aus, da der Strombedarf durch erneuerbaren Strom gedeckt würde.
Der Vergleich der Gesamtemissionen (WTW/WTP) kann aufgrund der geringen Unterschiede vereinfacht anhand von Mittelwerten betrachtet werden. Daher wird in Kapitel 7.2 nur zwischen den folgenden drei Bereitstellungspfaden unterschieden:

- HFO (Heavy Fuel Oil bzw. Schweröl) aus Rohöl
- Diesel aus Rohöl
- LNG aus Erdgas (Durchschnitt)
- LNG aus erneuerbarem Methan (Durchschnitt)

Für die Treibausgasemissionen für Diesel wird ein Wert von 15,35 g CO₂-Äqu pro MJ angenommen¹⁰. Für HFO werden nach [TNO 2011] 9,8 g CO₂-Äqu pro MJ angenommen.

7.1.3 Emissionsfaktoren für Binnenschiffe (TTP)

Die direkten CO₂-Emissionen von LNG (55 g/MJ) liegen pro Energiegehalt um ca. 25% niedriger als die von Diesel (73,3 g/MJ). Da die Antriebsseffizienz für LNG- und Dieselmotoren bei Binnenschiffen annähernd gleich ist, lässt sich diese CO₂-Minderung auch pro erbrachte Strecke bzw. Verkehrslieferung übertragen.

N₂O-Emissionen sind nach bisherigen Erfahrungen mit Diesel und Gasmotoren aus dem Straßenverkehr für die Summe der THG-Emissionen kaum relevant. Entsprechend der TNO Studie wird hier ein Wert für 0,4 g CO₂-Äquivalent/MJ (entspricht 1,34 mg N₂O/MJ) sowohl für LNG als Diesel angesetzt [TNO 2011].

Zukünftig (2030) werden die spezifischen Treibhausgasemissionen (pro MJ Kraftstoff) neben der Kraftstoffqualität selbst (z.B. dem Methangehalt) sowie dem Anteil erneuerbarer Energie entscheidend von der Motortechnik abhängen. Momentan machen CH₄-Emissionen bei LNG-Antrieben in Binnenschiffen fast 20% der gesamten direkten Treibhausgasemissionen aus. Es ist jedoch anzunehmen, dass die Methanemissionen im Falle strenger Emissionsvorschriften wie im Rahmen des EURO VI-Standards bei schweren Nutzfahrzeugen mit 0,5 g/kWh begrenzt werden können [Panteia 2013]. Hierdurch würden sich die THG-Emissionen gegenüber Diesel, bei gleichem Energieverbrauch, zusätzlich deutlich reduzieren. Die Entwicklung der N₂O-Emissionen kann schwer vorhergesagt werden,

da für N₂O keine Emissionsgrenzwerte bestehen oder geplant sind. Daher wird vereinfachend angenommen, dass sich die N₂O-Emissionen pro MJ Kraftstoff bis 2030 nicht verändern.

Tabelle 16: Emissionsfaktoren für Treibhausgase bei Binnenschiffsantrieben (TTP)

<table>
<thead>
<tr>
<th></th>
<th>Diesel (Stufe IIIA)</th>
<th>LNG (2013)</th>
<th>LNG (2030)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ [g/MJ]</td>
<td>73,2</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>CH₄ [g/MJ] in CO₂-Äqu. [g/MJ]</td>
<td>0,001</td>
<td>0,53</td>
<td>0,06</td>
</tr>
<tr>
<td>N₂O [g/MJ] in CO₂-Äqu. [g/MJ]</td>
<td>0,02</td>
<td>13,25</td>
<td>1,57</td>
</tr>
<tr>
<td>CO₂-Äqu gesamt [g/MJ]</td>
<td>73,6</td>
<td>69,9</td>
<td>56,9</td>
</tr>
</tbody>
</table>

Quelle: [TNO 2011] und Eigene Annahmen; Umrechnung der Grenzwerte pro kWh auf MJ mit einem spezifischen Kraftstoffverbrauch von 8,6 MJ/kWh (entspricht 200 g Diesel/kWh)

7.1.4 Emissionsfaktoren für schwere Nutzfahrzeuge (TTW)

Wie bei Binnenschiffen sind die CO₂-Emissionen pro Energiegehalt um ca. 25% niedriger als die von Diesel. Durch die deutlich geringe Antriebseffizienz von LNG gegenüber Diesel bei schweren Nutzfahrzeugen kann dieser Vorteil pro gefahrenen Kilometer jedoch kompensiert werden (siehe Treibhausgasbilanz in Kap. 7.2.1).

Methanemissionen sind bei Dieselmotoren praktisch vernachlässigbar. Für die Abgasstufe EURO VI gilt hierbei nur ein Grenzwert für Kohlenwasserstoffe insgesamt (THC) von 0,16 g/kWh. Würde dieser genau eingehalten und zu einem Anteil von 2,4% aus CH₄ (Annahme HBEFA) bestehen, betragen die CO₂-Äquivalente durch Methan gerade einmal 0,01 g/MJ Dieselkraftstoff. Für die ab 2013 in den Markt kommenden Nutzfahrzeuge mit Gasmotor besteht dagegen ein konkreter CH₄-Grenzwert von 0,5 g/kWh. Dies entspricht einer Methanemissionen von 0,06 g/MJ, oder umgerechnet 1,6 g CO₂-Äqu/MJ. Bei Einhaltung der Standards machen die Methanemissionen somit nur einen geringen Anteil an den gesamten THG-Emissionen aus.

Die N₂O-Emissionen werden für Diesel-Pkw mit EURO VI vereinfacht mit 5% des NOx-Grenzwertes abgeschätzt worden, bei CNG-Antrieben mit 3% [JEC 2013]. Vereinfacht dürfte dieser relative Anteil auch auf schwere Nutzfahrzeuge übertragbar sein. Bei einer Einhaltung des NOx-Grenzwertes von 0,46 g/kWh fallen somit jeweils 0,064 g N₂O bzw. 1,5 g CO₂-Äquivalent pro MJ an. Die N₂O-Emissionen sind daher in der Summe der Treibhausgasäquivalente kaum relevant.

Aktuell sind auf EU-Ebene offiziell keine neuen Emissionsgrenzwerte für schwere Nutzfahrzeuge geplant, auch liegen mit EURO VI derzeit bereits weit entwickelte Emissionsanforderungen für Nutzfahrzeuge vor. Daher wird auf eine Untersuchung von zukünftigen Emissionsfaktoren für schwere Nutzfahrzeuge verzichtet.
Tabelle 17: Emissionsfaktoren für Treibhausgase bei schweren Nutzfahrzeugen (TTW)

<table>
<thead>
<tr>
<th></th>
<th>Diesel (EURO VI)</th>
<th>LNG (EURO VI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ [g/MJ]</td>
<td>73,2</td>
<td>55</td>
</tr>
<tr>
<td>CH₄ [g/MJ]</td>
<td>0,0005</td>
<td>0,06</td>
</tr>
<tr>
<td>in CO₂-Äqu. [g/MJ]</td>
<td>0,01</td>
<td>1,57</td>
</tr>
<tr>
<td>N₂O [g/MJ]</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>in CO₂-Äqu. [g/MJ]</td>
<td>0,34</td>
<td>0,34</td>
</tr>
<tr>
<td>CO₂-Äqu. gesamt [g/MJ]</td>
<td>73,6</td>
<td>56,9</td>
</tr>
</tbody>
</table>

Quelle: Eigene Annahmen; Umrechnung der Grenzwerte pro kWh auf MJ mit einem spezifischen Kraftstoffverbrauch von 7,95 MJ/kWh (entspricht 185 g Diesel/kWh)

7.2 Beitrag zur Treibhausgasminderung

Die potenzielle Treibhausgasminderung durch LNG wird in der gesamten Wirkungskette von der Quelle zum Rad bzw. zum Propeller (WTW/WTP) dargestellt. Hierbei soll jeweils ein Benchmark die spezifischen Emissionen von LNG und Diesel zum heutigen Zeitpunkt vergleichen, sowie einen Ausblick auf die zukünftige Entwicklung aufgrund der Fahrzeugeffizienz und der Bereitstellung geben.

7.2.1 Seeschifffahrt

¹¹ Diesel und HFO haben einen höheren Kohlenstoffgehalt pro MJ und daher höhere CO₂-Emissionen als LNG bzw. Methan
Unter Einbeziehung der Methanemissionen liegen die THG-Emissionen von LNG dennoch um 15% bis 30% unter denen von HFO [Marintek 2007, 2011]. Trotz dieses Wissensstandes ist der Methanschlupf eine noch wenig referenzierte und damit unsichere Größe bei der Bewertung des klimaschonenden Beitrages von LNG.

Die Bereitstellung von LNG ist gegenüber HFO mit deutlich höheren Treibhausgasemissionen verbunden, der WTT-Anteil macht bei LNG jedoch nur ca. 25% der gesamten THG-Emissionen aus, bei Diesel ca. 16%). Die Treibhausgasemissionen pro Tonnekilometer in der gesamten Kette (WTT) sind beispielhaft für ein Containerschiff in Abbildung 20 dargestellt. In der Summe sind demnach durch LNG gegenüber HFO nur geringe Minderungen der THG-Emissionen möglich. Eine höhere Treibhausgasminderung ist möglich, wenn anstelle von fossiliem LNG erneuerbares Methan genutzt wird (vgl. nächster Abschnitt). Inwieweit dies zukünftig in der vorwiegend internationalen Seeschifffahrt der Fall sein wird, kann im Rahmen dieser Studie jedoch nicht abgeschätzt werden.

![Abbildung 20: Spezifische THG-Emissionen bei Seeschiffen 2013](image)

7.2.2 Binnenschifffahrt

Abbildung 21: Spezifische THG-Emissionen bei Binnenschiffen 2013

Abbildung 22: Spezifische THG-Emissionen bei Binnenschiffen (WTP) 2030

13%12 aus Biodiesel besteht, welcher die Anforderungen der Biokraftstoffnachhaltigkeitsverordnung (Biokraft-NachV) von -60% THG-Emissionen ab 2020 erfüllt. Um den Beitrag der Treibhausgasminderung im Jahr 2030 in Bezug zu den Zielen der Bundesregierung (-55% für alle Sektoren) bzw. des EU-Weißbuches (-20% im Verkehr) zu setzen, wird die Minderung auf das Jahr 1990 bezogen.

Abbildung 23: Potenzielle THG-Reduktion durch LNG in der Binnenschifffahrt in Abhängigkeit des Anteils erneuerbaren Methans

12 Der Biodieselanteil wird mit 13% (MJ/MJ) am Diesel angesetzt, um die Kriterien der Dekarbonisierungsstrategie ab 2020 (mindestens 7% gegenüber konventionellem Kraftstoff) zu erreichen (vgl. [IFEU 2012]).

7.2.3 Schwere Nutzfahrzeuge

In der Gesamtwirkungskette (WTW) liegen die Treibhausgasemissionen eines heutigen LNG-Sattelzuges mit ca. 1.100 g CO₂-Äqu/km um ca. 10% höher als beim Sattelzug mit Diesel-Antrieb. Der rein verbrennungsbedingte CO₂-Vorteil von ca. 25% wird somit durch höhere Treibhausgasemissionen bei der Bereitstellung von LNG und einen deutlich höheren Kraftstoffverbrauch aufgehoben. Direkte CH₄ und N₂O Emissionen (TTP) fallen aufgrund des strengen EURO VI Standards kaum ins Gewicht (Abbildung 24).

Abbildung 24: Spezifische THG-Emissionen bei schweren Nutzfahrzeugen (N3) 2013

Zukünftig nehmen die Treibhausgasemissionen je km um mehr als 20% gegenüber heute ab, was vorwiegend auf die effizienteren Fahrzeuge zurückzuführen ist. Aufgrund der stärkeren Effizienzverbesserung beim LNG-Sattelzug und der Nutzung des Dual-Fuel-Antriebes verursacht dieser um ca. 14% geringere THG-Emissionen als bei Diesel; der THG-Vorteil von LNG verbessert sich damit deutlich gegenüber 2010. Drastische Treibhausgaseinsparungen von über 90% können jedoch vor allem durch den Einsatz von rein erneuerbarem Methan im LNG-Fahrzeug erreicht werden (Abbildung 25).
Abbildung 25: Spezifische THG-Emissionen bei schweren Nutzfahrzeugen (N3) 2030

LNG könnte somit zukünftig zur Senkung der Treibhausgasemissionen des Straßengüterverkehrs beitragen. Hierbei wird angenommen, dass die Fahrleistung der schweren Nutzfahrzeuge im Jahr 2030 vollständig mit EURO VI Fahrzeugen erbracht wird. Wie bei der Binnenschifffahrt besteht der Dieselkraftstoff zu 13% aus Biodiesel, der die Anforderungen der Kraftstoffnachhaltigkeitsverordnung (-60% THG-Emissionen) erfüllt.

7.3 Beitrag zur Minderung der Luftschadstoffemissionen

Neben dem möglichen Beitrag zur Senkung der THG-Emissionen stellt auch die Verminderung von Luftschadstoffemissionen einen Treiber für den Einsatz von LNG dar. Die Emissionen von Stickoxiden (NOx), Partikeln (PM) und Schwefeldioxid (SO2) tragen zur Luftbelastung in Innenstädten sowie zur Versauerung und Eutrophierung bei. Im Gegensatz zu den Treibhausgasen stellen die Schadstoffemissionen meist vor allem eine locale bis regionale Gefährdung für die Umwelt dar. Daher werden im folgenden Kapitel nur die direkten Schadstoffemissionen aus dem Abgas der Antriebe, also TTW/TTP, betrachtet.

7.3.1 Seeschifffahrt

Die potentielle Minderung von Luftschadstoffemissionen bei Seeschiffen muss im Zusammenhang mit den verschiedenen ölbasierten Kraftstoffen und der Emissionsgrenzwertgesetzgebung gesehen werden. Letztere wird im Rahmen der MARPOL Annex VI durch die IMO (International Maritime Organisation) geregelt und räumlich in sogenannte Emission Control Areas (ECAs) und Zonen außerhalb der ECAs unterschieden. Bisher werden nur die SOx und NOx-Emissionen begrenzt, weitere Schadstoffe, z.B. Rußpartikel, sind nicht limitiert.

Eine Begrenzung der SOx-Emissionen über die IMO erfolgt über den Schwefelgehalt des Kraftstoffes in zeitlicher Staffelung (siehe Kap. 3). In ECAs darf der Schwefelgehalt ab dem Jahr 2015 maximal 0,1% (gewichtsbezogen) betragen, was dennoch der 100fachen Menge an Schwefel wie bei dem im Straßenverkehr eingesetzten Dieselkraftstoff entspricht. Um die Vorgaben zu erreichen, kann „Marine Diesel“ (0,5% S) bzw. Gasöl (0,1% S) eingesetzt werden. Mithilfe von Scrubber-Technologien, die der SOx-Nachbehandlung dienen, kann auch HFO eingesetzt werden. Dabei besteht jedoch die Heraus-
forderung weitere Umweltfolgen durch saure bzw. schadstoffhaltige Abwässer zu vermeiden sowie eine gleichzeitige Reduktion von NOx mit zusätzlichen Abgasnachbehandlungstechnologien zu gewährleisten [IMO 2009]. LNG ist mit 3,5 ppm hingegen praktisch schwefelfrei [TNO 2011]. Somit könnten die SOx-Emissionen gegenüber Schweröl oder Marine Diesel sowohl innerhalb der ECAs als auch global um fast 100% reduziert werden.

Partikelemissionen (PM) werden in der Seeschifffahrt zwar nicht über Grenzwerte geregelt, diese sind jedoch indirekt stark vom Schwefelgehalt des Kraftstoffes abhängig. Laut [Magalog 2008] werden für mit HFO betriebene Schiffsmotoren PM-Emissionen von 1,5 g/kWh angenommen, für Marine Diesel (0,5% S) liegen die Emissionen um ca. 65-80% niedriger, bei Gasöl (0,1% S) um bis zu 90%. Mit mindestens 0,15 g/kW liegen die PM-Emissionen dennoch weit über denen heutiger Straßenfahrzeuge, da ein Einsatz von Partikelfiltern nicht erforderlich bzw. aufgrund der Schwefelgehalte nicht umsetzbar ist. Bei LNG entstehen laut [Marintek 2007] praktisch keine Partikelemissionen, eine zusätzliche Minderung ist also in jedem Fall möglich.

Damit lässt sich konstatieren, dass LNG eine gute Option zur Senkung der Luftschadstoffe in der Seeschifffahrt ist. Alle gängigen Normen zu Schadstoffemissionen werden durch LNG übererfüllt und die technischen Herausforderungen hinsichtlich der Abgasnachbehandlung sind weitaus geringer als beim kombinierten Einsatz von NOx-Nachbehandlungssystem und Scrubbern. Neben der Einhaltung gesetzlicher Normen auf See sind die niedrigen Schadstoffemissionen von LNG-Schiffen insbesondere ein Vorteil für die Luftqualität in Hafenanlagen und hafennahen Innenstädten.

7.3.2 Binnenschifffahrt

Die hieraus abgeleiteten Emissionsfaktoren zeigt Tabelle 18. Laut [TNO 2011] ergeben sich hierbei vor allem bei den NOx-Emission von LNG sowie den Emissionen von Partikeln (PM) zwar durch Unsi-
cherheiten verursachte Bandbreiten. Bei den folgenden Werten werden jedoch nur Werte innerhalb dieser Bandbreiten dargestellt, die aufgrund weiterer Informationen plausibel schienen.

Aktuell werden Binnenschiffsmotoren über die Emissionsgrenzwertgesetzgebungen der EU-Richtlinie 97/68/EG mit der Stufe IIIA sowie durch die RheinSchUO mit der Stufe ZKR II typgenehmigt. Eine Verschärfung der Emissionsgrenzwerte für zukünftige Motoren wird aktuell im Rahmen der Revision der Richtlinie 97/68/EG untersucht [COM 2013b]. Die abschließend gültigen Emissionsgrenzwerte sind entscheidend für den Umweltvergleich zwischen LNG- und Dieselantrieben. Um eine mögliche Bandbreite für die Grenzwerte für die Binnenschiffahrt darzustellen werden zwei Grenzwertszenarien für 2030 untersucht:

- Stufe IIIB mit einer eher konservativen Verschärfung über die Angleichung an die IMO/EPA Tier III-Standards. Diese hätte alleine eine Reduktion der NOx-Emissionen um ca. 65-75% zur Folge.
- Stufe V mit einer ambitionierten Verschärfung über die Angleichung an die EURO VI-Standards für schwere Nutzfahrzeuge. Diese hätte eine drastische Reduktion sowohl der PM als auch NOx-Emissionen (über 95%) zur Folge.

Tabelle 18: Schadstoffemissionen TTP von neuen Binnenschiffsantrieben in 2010

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel (IIIA)</td>
<td>LNG</td>
<td>Diesel (St. IIIB)</td>
</tr>
<tr>
<td>NOx [g/kWh]</td>
<td>8,8</td>
<td>2,0</td>
</tr>
<tr>
<td>PM [g/kWh]</td>
<td>0,12</td>
<td>0,02</td>
</tr>
</tbody>
</table>

Quelle: [TNO 2011, Panteia 2013] und eigene Annahmen

Die Schadstoffemissionen verschiedener Grenzwerte sind in Abbildung 27 vergleichend dargestellt. Aktuell sind die Schadstoffemissionen von LNG-Motoren deutlich niedriger als bei modernen Dieselmotoren für Binnenschiffe. Durch die vergleichsweise wenig strengen Anforderungen der Stufe IIIA verursacht ein LNG-Motor (bei Dual-Fuel im Gasbetrieb) ca. 1/5 der NOx- und PM-Emissionen eines Dieselmotors. Da diese Emissionen insbesondere die lokale Luftqualität, v.a. in Häfen oder entlang von stark befahrenen Wasserstraßen beeinflussen, ergibt sich ein klarer Vorteil für LNG. Trotz der

13 Die Typgenehmigung umfasst nur neue Motoren, die Stufen IIIA und ZKR II traten hierfür zuerst im Jahr 2007 in Kraft.
vorgeschriebenen Verwendung fast schwefelfreien Kraftstoffes in Binnenschiffen (seit 2011) kann LNG auch die SO$_2$-Emissionen um etwas mehr als die Hälfte gegenüber Diesel senken.

Zukünftige Dieselmotoren für Binnenschiffe könnten jedoch deutlich geringere Schadstoffemissionen haben. Bei einer wenig ambitionierten Verschärfung über eine Stufe IIIB hätte LNG nach wie vor einen Vorteil niedriger PM-Emissionen gegenüber Diesel, die NOx-Emissionen wären dagegen ähnlich hoch. Bei strengeren Grenzwerten wie einer Stufe V in Anlehnung an schwere Nutzfahrzeuge wären die Emissionen bis auf SO$_2$ gleich hoch. Auch wird davon ausgegangen, dass selbst LNG-Antriebe dann Abgasnachbehandlungstechnologien wie SCR (Selective Catalytic Reduction) und Diesel-Partikelfilter benötigen, um die Grenzwerte einhalten zu können [Panteia 2013].

Abbildung 27: Vergleich spezifischer Schadstoffemissionen von LNG gegenüber Diesel bei Binnenschiffen

Quelle: [TNO 2011] und eigene Annahmen

Jedoch ist anzunehmen, dass strengere Emissionsstandards zumindest bei reinen Gasmotoren mit weniger Abgasnachbehandlungskosten als bei den Dieselantrieben erreicht werden können, falls z.B. auf einen Partikelfilter verzichtet werden kann. Diese Kostenersparnis könnte die höheren Investitionskosten für LNG-Antriebe und Tanks zu einem Teil ausgleichen und somit die Amortisation von LNG-Schiffen und deren Marktdurchdringung beschleunigen (vgl. [Panteia 2013]).
7.3.3 Schwere Nutzfahrzeuge

Es wird angenommen, dass reine Gasmotoren bezüglich der Schadstoffemissionen gegenüber EURO VI Diesel-Motoren kaum eine Minderung bringen. Bei CNG-Stadtbussen werden nach HBEFA 3.1 etwas geringerer PM, aber dafür etwas höhere NOx-Emissionen als bei Dieselbussen angenommen\(^\text{14}\). Zur Einhaltung des EURO VI-Standards könnten daher auch LNG-Antriebe eine speziell zu entwickelnde Abgasnachbehandlung benötigen, insbesondere wenn es sich um Dual-Fuel Motoren handelt. Darüber hinaus muss für die Verbrennung von Methan in Lkw-Motoren die Einhaltung eines CH\(_4\)-Emissionsgrenzwertes gewährleistet werden. Eine signifikante Minderung der Schadstoffemissionen durch LNG ist daher sowohl heute als auch mit Blick auf die Zukunft nicht abzusehen.

7.4 Zusammenfassung zur Reduktion von Treibhausgas- und Schadstoffemissionen

Hohe Substitutionsraten von Erdgas durch EE-Methan könnten zukünftig auch insgesamt zur Senkung der Treibhausgasemissionen des nach [VP 2030] weiter anwachsenden Güterverkehrs beitragen und die Einhaltung politischer Ziele vor allem in der Binnenschifffahrt unterstützen. LNG sollte daher als Alternative zu CNG aus erneuerbaren Quellen, zu erneuerbaren Flüssigkraftstoffen (z.B. Biodiesel

\(^{14}\) Siehe hierzu die MKS-Kurzstudie „CNG und LPG – Potenziale dieser Energieträger auf dem Weg zu einer nachhaltigeren Energieversorgung des Straßenverkehrs“
oder Power-to-Liquid), zu erneuerbarem Wasserstoff für Brennstoffzellenantriebe oder der direkten Nutzung von Strom in Erwägung gezogen werden.

8 Handlungsempfehlungen

Zunächst einige generelle Aspekte, die für die See- und Binnenschifffahrt sowie den Straßengüterverkehr mit schweren Nutzfahrzeugen gleichermaßen gelten:

- In jedem Fall sollte eine Orientierung bzw. Einführung von LNG gründlich vorbereitet und alle relevanten technischen und wirtschaftlichen Risiken identifiziert und bewertet werden. Da die erforderlichen Investitionen sehr hoch sind, müssen relevante Akteure entlang der Wertschöpfungskette mit einbezogen werden.

- Durch eine Abstimmung der Planungen auf europäischer Ebene sind internationale Güterverkehrsströme mit zu berücksichtigen, um eine Nutzung über die Grenzen Deutschlands hinaus sicherzustellen (z.B. in Häfen, auf TEN-V Netzen).

- Die Anrechenbarkeit von erneuerbarem Methan zum EU-Ziel von 10% erneuerbare Kraftstoffe bis zum Jahr 2020 ist prinzipiell gegeben. Mit der EU-Kommission ist konkret abzustimmen, dass die „Default“-Werte für verschiedene erneuerbare LNG-Pfade in der EU-Richtlinie für Er-
neuerbare Energien (RED) aufgenommen werden und die Anrechnungsmethode / Nachweise transparent sind.

Handlungsempfehlungen für die Seeschifffahrt:

- In der noch frühen Einführungsphase von LNG in der Schifffahrt können sich deutsche Häfen als Umschlags- und Anwendungsorte etablieren, auch für andere Verkehrsträger, die sich ebenfalls steigenden Emissionsanforderungen gegenüber sehen. Akteure könnten bei Pilotanwendungen, z.B. in Genehmigungsfragen, unterstützt werden.

- Synergien beim Aufbau einer LNG-Infrastruktur („Bunkering“) für See- und Binnenschifffahrt sind zu identifizieren.

- Internationale Kooperationen sind Voraussetzung zum Aufbau einer abgestimmten und auf die Nutzer ausgerichtete Infrastruktur in den jeweiligen Häfen.
Handlungsempfehlungen für die Binnenschifffahrt:

- Schaffung der genehmigungsrechtlichen Grundlagen für den Einsatz von LNG-Schiffen in Deutschland. Eine zentrale Bedeutung für den deutschen Gütertransport auf Binnenschiffen nimmt hierfür die Zentralkommission für die Rheinschifffahrt (ZKR) ein.

- Bereits heute ist für einen Teil der Binnenschiffflotte die Wirtschaftlichkeit beim Einsatz von LNG gegenüber Diesel gegeben. Aufgrund der oft kleingewerblichen Struktur in der Binnen- schifffahrt könnten geeignete Finanzierungskonzepte dabei helfen, die hierfür notwendigen Investitionen zu tragen.

- Erweiterung und Verbesserung der Datengrundlage bezüglich der Emissionen von Methan entlang der gesamten Kette „von der Quelle bis zur Nutzung“, insbesondere mit Fokus auf Methanemissionen beim Antriebsmotor (ggf. auch unter realen Bedingungen) und durch Tankverluste.

- Die motorischen Treibhausgasemissionen von LNG-Schiffen könnten über verbindliche Emissionsstandards für Methanemissionen – analog zu schweren Nutzfahrzeugen – begrenzt werden. Adressaten hierfür sind die EU-Kommission und die ZKR.

- Kurzfristiger Aufbau einer Basisinfrastruktur an LNG-Tankstellen für Binnenschiffe entlang des Rheins.

Die Einführung von LNG als Kraftstoff bei schweren Nutzfahrzeugen kann mit Hilfe folgender wesentlicher Entwicklungsschritte erfolgen, die sowohl die Politik (z.B. durch Rahmenbedingungen und Förderung) als auch die Industrie (z.B. durch technische Entwicklung und Pilotverkehre) unterstützen sollten:

- In einem ersten Schritt: Abklärung der Risiken, die sich dadurch ergeben können, dass die THG-Reduktionspotenziale möglicherweise sehr begrenzt sind, insbesondere wenn das LNG aus fossilen Quellen stammt und wenn sich die Dual-Fuel Motortechnik nicht etablieren lässt. In diesem Falle wäre z.B. eine öffentliche Unterstützung des Infrastrukturaufbaus nicht ohne weiteres zu rechtfertigen. Ebenfalls ist abzuklären, wie sich die energetisch aufwendige Bereitstellung von LNG via EE-Methan aus Sicht der THG-Reduktion im Vergleich zu anderen Alternativen darstellt.

- In einem zweiten Schritt: Unterstützung der Fahrzeugindustrie, um die Schadstoffklasse EURO VI bei Dual-Fuel-Antrieben möglichst schnell zu erreichen, sodass diese wie bei reinen Gas-Antrieben auf dem Neufahrzeugmarkt verfügbar sind. Es wird empfohlen, sich von den wichtigsten Lkw-Motorenherstellern erläutern zu lassen, ob, mit welchem Aufwand und bis
wann EURO VI zertifizierte Dual-Fuel Motoren realisiert werden können, da dies eine wichtige
Voraussetzung für die Nutzerakzeptanz ist.

- In einem dritten Schritt: Errichtung von LNG-Tankstellen für Flotten mit Pendelverkehren. Die-
 se Tankstellen sollten für alle Nutzer zugänglich sein.

- Eine weitere Aktivität ist die Diskussionen mit der Fahrzeugindustrie und mit Infrastrukturbe-
 treibern zu erforderlichen, langfristigen Rahmenbedingungen einer Einführung von LNG als
Kraftstoff für schwere Nutzfahrzeuge.

Die o.g. Entwicklungsschritte werden dabei parallel voran gebracht, wobei aber noch weitere konkrete
Voraussetzungen zu schaffen sind. Auch bei diesen sollten Politik und Industrie sich über gemeinsa-
me Interessen verständigen und konkrete Zielsetzungen formulieren und realisieren, z.B. im Rahmen
eines MKS-Prozesses:

- Sicherstellung z.B. mittels empirischer Analysen bei Nutzern, dass LNG bei schweren Nutz-
 fahrzeugen sich tatsächlich zu einer bevorzugten Option entwickelt.

- Identifizierung von Anwendungen und Bedingungen, bei denen u.a. Diesel oder CNG gleich-
 wertig bleiben oder sogar vorteilhafter sind.

- Nachweisen der Akzeptanz bei den Nutzern sowohl von Dual-Fuel in Dieselmotoren als auch
 reinem Methan in Form von LNG oder auch als CNG in Ottomotoren auf Basis von Nutzer-
 kostenvergleichen mit konventionellen Lkw mit einem Verbrennungskraftmotor, der mit reinem
 Diesel betrieben wird. Klärung der Fragestellung: Für welche Nutzer und unter welchen Rand-
 bedingungen (z.B. ab welcher durchschnittlicher jährlicher Fahrleistung in Abhängigkeit zur
Preisdifferenz LNG-Diesel) ergibt sich zukünftig ein wirtschaftlicher Vorteil?

- Vergleich der Infrastrukturkosten verschiedener Optionen zur Versorgung von Lkw mit LNG
 bzw. CNG, insbesondere auch von regionalen und lokalen Konzepten.

- Entwerfen eines Zeitplanes, der die Errichtung der Tankstelleninfrastruktur, die notwendigen
 Genehmigungsverfahren und notwendige weitere Rahmenbedingungen zur Planung und zum
 Bau berücksichtigt, u.a.:
 - Schaffung einer Infrastruktur zur Distribution von LNG von den Seehäfen ausgehend,
 die dann über die Binnenhäfen erweitert wird.
 - Aufbau von Tankstellen mit eigenen Verflüssigungsstationen, die das Erdgas aus dem
 öffentlichen Gasnetz beziehen und vor Ort verflüssigen.

Mit diesen Handlungsempfehlungen soll eine intensivere Beschäftigung mit dem Einsatz des Energie-
trägers LNG auch in Deutschland angestossen und unterstützt werden. Damit kann einem verstärkten
Einsatz von LNG in der Schifffahrt sowie in schweren Nutzfahrzeugen der Weg bereitet werden.

Die Handlungsempfehlungen können als wichtige Bausteine für einen nationalen Entwicklungsplan für
LNG als Alternativkraftstoff für die Schifffahrt und schwere Nutzfahrzeuge dienen. Damit können die
EU-Ziele aus der geplanten EU-Infrastrukturrichtlinie [COM 2013] für LNG in Deutschland umfassend
und koherent für die verschiedenen Verkehrsmittel adressiert werden.
Abkürzungen

BTU British Thermal Unit
CH₄ Methan
CNG Compressed Natural Gas (Verdichtetes Erdgas)
DPF Dieselpartikelfilter
ECA Emission Control Areas
EE Erneuerbare Energien
ft³/d Cubic feet per day (Kubikfuß pro Tag)
GWP Global Warming Potential
HBEFA Handbook Emission Factors for Road Transport
HFO Heavy Fuel Oil bzw. Schweröl
KfZ Kraftfahrzeug
LCNG Compressed Natural Gas from Liquefied Natural Gas (Verdichtetes Erdgas aus LNG)
Lkw Lastkraftwagen
LNG Liquefied Natural Gas (Verflüssigtes Erdgas)
MEA Monoethanolamin
MPa Megapascal (1 MPa = 10 bar)
Nm³ Normkubikmeter
NOₓ Stickstoffoxide
Pkw Personenwagen
PtG Power-to-Gas (Strom zu Wasserstoff und via Methanisierung zu synth. Methan = EE-Methan)
PtL Power-to-Liquid (Strom zu Wasserstoff und via Synthese zu synth. Flüssigkraftstoffen)
SCR Selektive katalytische Reduktion
SECA Sulphur Emission Control Areas
SOₓ Schwefeloxid
TEN-V Trans-Europäisches Netzwerk – Verkehr
TEU Twenty-foot Equivalent Unit (1 TEU entspricht einem 20-Fuß-ISO-Container)
THG Treibhausgasemissionen
tkm Tonnenkilometer
TTP Tank-to-Propeller
TTW Tank-to-Wheel (vom Tank bis zum Rad)
VKM Verbrennungskraftmotor
WSV Wasser- und Schifffahrtsverwaltung
WTP Well-to-Propeller (von der Quelle bis zum Propeller)
WTT Well-to-Tank (von der Quelle bis zum Tank)
WTW Well-to-Wheel (von der Quelle bis zum Rad)
zGG zulässiges Gesamtgewicht
ZKR Zentralkommission für die Rheinschifffahrt
Literaturverzeichnis

Arbeitsgemeinschaft Energiebilanzen e.V. (AGEB): Bruttostromerzeugung in Deutschland von 1990 bis 2012 nach Energieträgern, Stand: 2 August 2013

[BGR 2012] Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Abschätzung des Erdgaspotenzials aus dichten Tongesteinen (Schiefergas) in Deutschland, Hannover, Mai 2012

[CHAL 2010] Chalmers, Potential and conditions for LNG fueled short sea shipping in East Asia, Göteborg, May 2010

[CW 2013] Overview Cummins Westport; Presentation, B. Boyce, 09.01.2013

[Daimler 2013] Persönliche Kommunikation Daimler AG, September 2013

[DBFZ et al 2013] Deutsches Biomasseforschungszentrum (DBFZ) et al., November 2013

[DMA 2012] The Danish Maritime Authority (DMA): North European LNG Infrastructure Project – A feasibility study for an LNG filling station infrastructure and test of recommendations; Copenhagen, March 2012

[DSLV 2013] Berechnung von Treibhausgasemissionen in Spedition und Logistik gemäß DIN EN 16258 - Begriffe, Methoden, Beispiele; DSLV Deutscher Speditions- und Logistikverband e.V.; März 2013
[ECG 2011] Sulphur Content in Marine Fuels, Briefing Report, ECG, November 2011

[EU-Weißbuch 2011] Fahrplan zu einem einheitlichen europäischen Verkehrsraum – Hin zu einem wettbewerbsorientierten und ressourcenschonenden Verkehrssystem

[FAZ 2013a] Riesige Schieferöl- und –gasvorräte auf der Welt, Frankfurter Allgemeine Zeitung, 12.06.2013

[FAZ 2013b] Schiefergas-Bonanza in Asien – China will riesige Vorkommen ausbeuten, Singapur zum Handelsplatz werden, Frankfurter Allgemeine Zeitung, 12.08.2013

[INE/EBU/ESO 2011] Setting the course - A new transport policy for 2020; Inland Navigation Europe (INE), European Barge Union (EBU), European Skippers’ Organisation (ESO); January 2011

[ITP, BVU 2007] ITP und BVU, Prognose der deutschlandweiten Verkehrsverflechtungen 2025, 14.11.2007, München/Freiburg

[IWES 2013] Fraunhofer Institut für Windenergie und Energiesystemtechnik (IWES), Kassel: Potenzial der Windenergienutzung an Land; Langfassung; Studie im Auftrag des Bundesverband WindEnergie (BWE); Februar 2013

[natgas 2013] natgas.info – The independent natural gas information site

[NGVAeurope 2013] Worldwide NGVs & Refuelling Station Statistics

[Panteia 2013] Panteia: CONTRIBUTION TO IMPACT ASSESSMENT of measures for reducing emissions of inland navigation; financed by the European Commission; Zoetermeer, 10 June 2013

[Schiff & Hafen 2013] Schiffahrtsmärkte unter Druck; in: Schiff & Hafen, Nr. 10, Oktober 2013, S. 12ff

[Seitz 2012] M. Seitz; Masterplan for LNG as fuel and cargo on the Danube; ProDanube International; General Secretary CCNR Workshop Strasbourg, 13 November 2012

[Shell 2013a] Shell launches the first 100% LNG powered barge; Pressemeldung; online abrufbar unter: http://www.shell.com/global/products-
services/solutions-for-businesses/shipping-trading/about-shell-shipping/lng-barges-19032013.html; letzter Zugriff am 28.10.2013

[Statoil 2013] Natural Gas Market Outlook by Fríde Seljevold Methi, Manager Gas Market Analysis, Bergen April 10th 2013

[TNO 2011b] Verbeek, R; Bolech, M. (TNO), den Uli, H. (ECN); Alternative fuels for sea shipping; December 2011

tar.pdf

[Zittel 2013] Oil and Gas Resources and Production, LBST Review, September 2013

[ZKR 2012] Möglichkeiten zur Reduzierung des Kraftstoffverbrauchs und der Treibhausgasemissionen in der Binnenschifffahrt; Zentralkommission für die Rheinschifffahrt (ZKR); Bericht des Untersuchungsausschusses zur Herbsttagung 2012

Anhang

Gase werden in den verschiedenen Quellen in unterschiedlichen Einheiten angegeben. Tabelle 19 zeigt die Umrechnungsfaktoren für die verschiedenen Einheiten

Tabelle 19: Einheiten für Erdgas bzw. Methan

<table>
<thead>
<tr>
<th></th>
<th>Nm³</th>
<th>Scf</th>
<th>t CH₄ bei 0°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Nm³</td>
<td>1</td>
<td>35,32</td>
<td>0,0007162</td>
</tr>
<tr>
<td>1 Scf</td>
<td>0,02832</td>
<td>1</td>
<td>0,00002028</td>
</tr>
<tr>
<td>1 t CH₄ bei 0°C</td>
<td>1,396</td>
<td>49,300</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 20 zeigt die unteren Heizwerte (Hₜ) unterschiedlicher Kraftstoffe.

Tabelle 20: Unterer Heizwert von Kraftstoffen

<table>
<thead>
<tr>
<th></th>
<th>MJ/kg (kWh/kg)</th>
<th>MJ/l (kWh/l)</th>
<th>MJ/Nm³ (kWh/Nm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottokraftstoff (Benzin)</td>
<td>43,20 (12,00)</td>
<td>32,18 (8,94)</td>
<td>-</td>
</tr>
<tr>
<td>Dieselkraftstoff</td>
<td>43,13 (11,98)</td>
<td>35,88 (9,97)</td>
<td>-</td>
</tr>
<tr>
<td>Fettsäuremethylester („Biodiesel“)</td>
<td>37,2 (10,33)</td>
<td>33,11 (9,20)</td>
<td>-</td>
</tr>
<tr>
<td>LNG (Methan)</td>
<td>50,00 (13,98)</td>
<td>18-21 (5,03-5,87)</td>
<td>35,82 (9,95)</td>
</tr>
</tbody>
</table>

Quelle: [JEC 2013]

15 Dichte und daraus resultierender volumenspezifischer unter Heizwert abhängig von Druck und Temperatur